blob: 8311d17adfbc84166ad26225246934889a957931 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Optional, Union
import tvm
import tvm.script
import tvm.testing
from tvm import IRModule, relax
from tvm.script import relax as R
def _check(
parsed: Union[relax.Function, IRModule],
expect: Optional[Union[relax.Function, IRModule]],
):
test = parsed.script(show_meta=True)
roundtrip_mod = tvm.script.from_source(test)
tvm.ir.assert_structural_equal(parsed, roundtrip_mod)
if expect:
tvm.ir.assert_structural_equal(parsed, expect)
def test_full():
@R.function
def foo(v: R.Tensor((), "int32")) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = R.full((2, 3), v, dtype="float32")
return gv
bb = relax.BlockBuilder()
v = relax.Var("v", R.Tensor((), "int32"))
with bb.function("foo", [v]):
gv = bb.emit(relax.op.full((2, 3), v, "float32"))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_full_like():
@R.function
def foo(
x: R.Tensor((2, 3), "float16"), v: R.Tensor((), "float32")
) -> R.Tensor((2, 3), "float16"):
gv: R.Tensor((2, 3), "float16") = R.full_like(x, v)
return gv
x = relax.Var("x", R.Tensor((2, 3), "float16"))
v = relax.Var("y", R.Tensor((), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, v]):
gv = bb.emit(relax.op.full_like(x, v))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_ones():
@R.function
def foo(dumb_param: R.Tensor()) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = R.ones((2, 3), "float32")
return gv
bb = relax.BlockBuilder()
dumb_param = relax.Var("dumb_param", R.Tensor())
with bb.function("foo", [dumb_param]):
gv = bb.emit(relax.op.ones((2, 3), "float32"))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_ones_like():
@R.function
def foo(x: R.Tensor((2, 3), "float32")) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = R.ones_like(x)
return gv
x = relax.Var("x", R.Tensor((2, 3), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.ones_like(x))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_zeros():
@R.function
def foo(dumb_param: R.Tensor()) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = R.zeros((2, 3), "float32")
return gv
bb = relax.BlockBuilder()
dumb_param = relax.Var("dumb_param", R.Tensor())
with bb.function("foo", [dumb_param]):
gv = bb.emit(relax.op.zeros((2, 3), "float32"))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_zeros_like():
@R.function
def foo(x: R.Tensor((2, 3), "float32")) -> R.Tensor((2, 3), "float32"):
gv: R.Tensor((2, 3), "float32") = R.zeros_like(x)
return gv
x = relax.Var("x", R.Tensor((2, 3), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.zeros_like(x))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_arange():
@R.function
def foo():
gv = R.arange(1, 10, 2)
return gv
bb = relax.BlockBuilder()
with bb.function("foo", []):
gv = bb.emit(relax.op.arange(1, 10, 2))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_tril():
@R.function
def foo(x: R.Tensor((2, 3, 4), "float32")) -> R.Tensor((2, 3, 4), "float32"):
gv: R.Tensor((2, 3, 4), "float32") = R.tril(x, k=2)
return gv
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.tril(x, k=2))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_triu():
@R.function
def foo(x: R.Tensor((2, 3, 4), "float32")) -> R.Tensor((2, 3, 4), "float32"):
gv: R.Tensor((2, 3, 4), "float32") = R.triu(x)
return gv
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.triu(x))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
if __name__ == "__main__":
tvm.testing.main()