blob: 120cb47c70769fb8a4f63afc4aceb2402f47ac5d [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
import tvm
import tvm.testing
from tvm import relax, tir
from tvm import TVMError
from tvm.ir import Op, VDevice
from tvm.script import relax as R
def test_op_correctness():
x = relax.Var("x", R.Tensor((2, 3), "float32"))
y = relax.Var("y", R.Tensor((2, 3), "float32"))
z = relax.Var("z", R.Tensor((2, 3), "float32"))
assert relax.op.ewise_fma(x, y, z).op == Op.get("relax.ewise_fma")
def _check_inference(bb: relax.BlockBuilder, call: relax.Call, expected_sinfo: relax.StructInfo):
ret = bb.normalize(call)
tvm.ir.assert_structural_equal(ret.struct_info, expected_sinfo)
def test_ewise_fma_infer_struct_info():
bb = relax.BlockBuilder()
vdev0 = VDevice("llvm")
x0 = relax.Var("x", R.Tensor((2, 3), "float32"))
x1 = relax.Var("x", R.Tensor((2, 3)))
x2 = relax.Var("x", R.Tensor((2, 3), "float32", vdev0))
y0 = relax.Var("y", R.Tensor((2, 3), "float32"))
y1 = relax.Var("y", R.Tensor(dtype="float32", ndim=2))
y2 = relax.Var("y", R.Tensor((2, 3), "float32", vdev0))
z0 = relax.Var("z", R.Tensor((2, 3), "float32"))
z1 = relax.Var("z", R.Tensor("float32"))
z2 = relax.Var("z", R.Tensor((2, 3), "float32", vdev0))
_check_inference(bb, relax.op.ewise_fma(x0, y0, z0), relax.TensorStructInfo((2, 3), "float32"))
_check_inference(
bb, relax.op.ewise_fma(x2, y2, z2), relax.TensorStructInfo((2, 3), "float32", vdev0)
)
_check_inference(
bb, relax.op.ewise_fma(x0, y1, z0), relax.TensorStructInfo(dtype="float32", ndim=2)
)
_check_inference(
bb, relax.op.ewise_fma(x0, y1, z1), relax.TensorStructInfo(dtype="float32", ndim=2)
)
_check_inference(bb, relax.op.ewise_fma(x1, y0, z0), relax.TensorStructInfo((2, 3), dtype=""))
def test_ewise_fma_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
m = tir.Var("m", "int64")
n = tir.Var("n", "int64")
x0 = relax.Var("x", R.Tensor((m, n), "float32"))
y0 = relax.Var("y", R.Tensor((m, n), "float32"))
y1 = relax.Var("y", R.Tensor(dtype="float32", ndim=2))
z0 = relax.Var("z", R.Tensor((m, n), "float32"))
_check_inference(bb, relax.op.ewise_fma(x0, y0, z0), relax.TensorStructInfo((m, n), "float32"))
_check_inference(
bb, relax.op.ewise_fma(x0, y1, z0), relax.TensorStructInfo(dtype="float32", ndim=2)
)
def test_ewise_fma_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s", relax.ShapeStructInfo(ndim=2))
s1 = relax.Var("s", relax.ShapeStructInfo(ndim=2))
s2 = relax.Var("s", relax.ShapeStructInfo())
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32"))
y = relax.Var("y", relax.TensorStructInfo(s0, "float32"))
z = relax.Var("z", relax.TensorStructInfo(s0, "float32"))
_check_inference(bb, relax.op.ewise_fma(x0, y, z), relax.TensorStructInfo(s0, "float32"))
_check_inference(
bb, relax.op.ewise_fma(x1, y, z), relax.TensorStructInfo(dtype="float32", ndim=2)
)
_check_inference(
bb, relax.op.ewise_fma(x2, y, z), relax.TensorStructInfo(dtype="float32", ndim=2)
)
def test_ewise_fma_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float64"))
y0 = relax.Var("y", R.Tensor((2, 3), "float64"))
z0 = relax.Var("z", R.Tensor((2, 3), "float64"))
x1 = relax.Var("x", R.Tensor((2, 3), "int8"))
y1 = relax.Var("y", R.Tensor((2, 3), "int8"))
z1 = relax.Var("z", R.Tensor((2, 3), "int8"))
x2 = relax.Var("x", R.Tensor((2, 3), "int64"))
y2 = relax.Var("y", R.Tensor((2, 3), "int64"))
z2 = relax.Var("z", R.Tensor((2, 3), "int64"))
_check_inference(bb, relax.op.ewise_fma(x0, y0, z0), relax.TensorStructInfo((2, 3), "float64"))
_check_inference(bb, relax.op.ewise_fma(x1, y1, z1), relax.TensorStructInfo((2, 3), "int8"))
_check_inference(bb, relax.op.ewise_fma(x2, y2, z2), relax.TensorStructInfo((2, 3), "int64"))
def test_ewise_fma_infer_struct_info_dtype_mismatch():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3), "float32"))
y0 = relax.Var("y", R.Tensor((2, 3), "int32"))
y1 = relax.Var("y", R.Tensor((2, 3), "float32"))
z0 = relax.Var("z", R.Tensor((2, 3), "float32"))
z1 = relax.Var("z", R.Tensor((2, 3), "int8"))
with pytest.raises(TVMError):
bb.normalize(relax.op.ewise_fma(x, y0, z0))
with pytest.raises(TVMError):
bb.normalize(relax.op.ewise_fma(x, y1, z1))
def test_ewise_fma_infer_struct_info_ndim_mismatch():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3), "float32"))
y0 = relax.Var("y", R.Tensor((2, 3), "float32"))
y1 = relax.Var("y", R.Tensor((2, 3, 4), "float32"))
z0 = relax.Var("z", R.Tensor((2, 3), "float32"))
z1 = relax.Var("z", R.Tensor(dtype="float32", ndim=4))
with pytest.raises(TVMError):
bb.normalize(relax.op.ewise_fma(x, y1, z0))
with pytest.raises(TVMError):
bb.normalize(relax.op.ewise_fma(x, y0, z1))
def test_ewise_fma_wrong_input_number():
x = relax.Var("x", R.Tensor((2, 3), "float32"))
with pytest.raises(TypeError):
relax.op.ewise_fma(x)
with pytest.raises(TypeError):
relax.op.ewise_fma(x, x)
with pytest.raises(TypeError):
relax.op.ewise_fma(x, x, x, x)
def test_ewise_fma_infer_struct_info_wrong_input_type():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3), "float32"))
y0 = relax.Var("y", relax.ShapeStructInfo((2, 3)))
y1 = relax.Var("y", relax.FuncStructInfo([], R.Tensor((2, 3), "float32")))
z = relax.Var("z", R.Tensor((2, 3), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.ewise_fma(x, y0, z))
with pytest.raises(TVMError):
bb.normalize(relax.op.ewise_fma(x, y1, z))
if __name__ == "__main__":
tvm.testing.main()