blob: 6b2f375e59b96928c842f42b91f134a0ae2b5940 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
import tvm
import tvm.testing
from tvm import relax, tir
from tvm import TVMError
from tvm.ir import Op
from tvm.script import relax as R
def test_op_correctness():
x = relax.Var("x", R.Tensor((2, 3), "float32"))
assert relax.op.ccl.allreduce(x).op == Op.get("relax.ccl.allreduce")
assert relax.op.ccl.broadcast_from_worker0(x).op == Op.get("relax.ccl.broadcast_from_worker0")
assert relax.op.ccl.allgather(x, 2).op == Op.get("relax.ccl.allgather")
def _check_inference(bb: relax.BlockBuilder, call: relax.Call, expected_sinfo: relax.StructInfo):
ret = bb.normalize(call)
tvm.ir.assert_structural_equal(ret.struct_info, expected_sinfo)
def test_allreduce_infer_struct_info():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=3))
x2 = relax.Var("x", R.Tensor("float32", ndim=-1))
x3 = relax.Var("x", R.Tensor((2, 3)))
x4 = relax.Var("x", R.Tensor())
x5 = relax.Var("x", R.Tensor((3, 4)))
_check_inference(bb, relax.op.ccl.allreduce(x0), relax.TensorStructInfo((2, 3), "float32"))
_check_inference(
bb, relax.op.ccl.allreduce(x1), relax.TensorStructInfo(dtype="float32", ndim=3)
)
_check_inference(bb, relax.op.ccl.allreduce(x2), relax.TensorStructInfo(dtype="float32"))
_check_inference(bb, relax.op.ccl.allreduce(x3), relax.TensorStructInfo((2, 3), dtype=""))
_check_inference(bb, relax.op.ccl.allreduce(x4), relax.TensorStructInfo(dtype=""))
_check_inference(bb, relax.op.ccl.allreduce(x5), relax.TensorStructInfo((3, 4), dtype=""))
def test_allreduce_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
m = tir.Var("m", "int64")
n = tir.Var("n", "int64")
x0 = relax.Var("x", R.Tensor((m, n), "float32"))
x1 = relax.Var("x", R.Tensor((4, n), "float32"))
_check_inference(bb, relax.op.ccl.allreduce(x0), relax.TensorStructInfo((m, n), "float32"))
_check_inference(bb, relax.op.ccl.allreduce(x1), relax.TensorStructInfo((4, n), "float32"))
def test_allreduce_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s", relax.ShapeStructInfo(ndim=2))
s1 = relax.Var("s", relax.ShapeStructInfo())
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
_check_inference(bb, relax.op.ccl.allreduce(x0), relax.TensorStructInfo(s0, "float32"))
_check_inference(bb, relax.op.ccl.allreduce(x1), relax.TensorStructInfo(s1, "float32"))
def test_allreduce_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float64"))
x1 = relax.Var("x", R.Tensor((2, 3), "int8"))
x2 = relax.Var("x", R.Tensor((2, 3), "int64"))
_check_inference(bb, relax.op.ccl.allreduce(x0), relax.TensorStructInfo((2, 3), "float64"))
_check_inference(bb, relax.op.ccl.allreduce(x1), relax.TensorStructInfo((2, 3), "int8"))
_check_inference(bb, relax.op.ccl.allreduce(x2), relax.TensorStructInfo((2, 3), "int64"))
def test_allgather_infer_struct_info():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=3))
x2 = relax.Var("x", R.Tensor("float32", ndim=-1))
x3 = relax.Var("x", R.Tensor((2, 3)))
x4 = relax.Var("x", R.Tensor())
x5 = relax.Var("x", R.Tensor((3, 4)))
_check_inference(bb, relax.op.ccl.allgather(x0, 2), relax.TensorStructInfo((4, 3), "float32"))
_check_inference(
bb, relax.op.ccl.allgather(x1, 2), relax.TensorStructInfo(dtype="float32", ndim=3)
)
_check_inference(bb, relax.op.ccl.allgather(x2, 2), relax.TensorStructInfo(dtype="float32"))
_check_inference(bb, relax.op.ccl.allgather(x3, 2), relax.TensorStructInfo((4, 3), dtype=""))
_check_inference(bb, relax.op.ccl.allgather(x4, 2), relax.TensorStructInfo(dtype=""))
_check_inference(bb, relax.op.ccl.allgather(x5, 2), relax.TensorStructInfo((6, 4), dtype=""))
def test_allgather_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
m = tir.Var("m", "int64")
n = tir.Var("n", "int64")
x0 = relax.Var("x", R.Tensor((m, n), "float32"))
x1 = relax.Var("x", R.Tensor((4, n), "float32"))
_check_inference(
bb, relax.op.ccl.allgather(x0, 2), relax.TensorStructInfo((m * 2, n), "float32")
)
_check_inference(bb, relax.op.ccl.allgather(x1, 2), relax.TensorStructInfo((8, n), "float32"))
def test_allgather_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s", relax.ShapeStructInfo(ndim=2))
s1 = relax.Var("s", relax.ShapeStructInfo())
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
_check_inference(bb, relax.op.ccl.allgather(x0, 2), relax.TensorStructInfo(s0, "float32"))
_check_inference(bb, relax.op.ccl.allgather(x1, 2), relax.TensorStructInfo(s1, "float32"))
def test_allgather_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float64"))
x1 = relax.Var("x", R.Tensor((2, 3), "int8"))
x2 = relax.Var("x", R.Tensor((2, 3), "int64"))
_check_inference(bb, relax.op.ccl.allgather(x0, 2), relax.TensorStructInfo((4, 3), "float64"))
_check_inference(bb, relax.op.ccl.allgather(x1, 2), relax.TensorStructInfo((4, 3), "int8"))
_check_inference(bb, relax.op.ccl.allgather(x2, 2), relax.TensorStructInfo((4, 3), "int64"))
def test_broadcast_from_worker0_infer_struct_info():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=3))
x2 = relax.Var("x", R.Tensor("float32", ndim=-1))
x3 = relax.Var("x", R.Tensor((2, 3)))
x4 = relax.Var("x", R.Tensor())
x5 = relax.Var("x", R.Tensor((3, 4)))
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x0), relax.TensorStructInfo((2, 3), "float32")
)
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x1), relax.TensorStructInfo(dtype="float32", ndim=3)
)
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x2), relax.TensorStructInfo(dtype="float32")
)
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x3), relax.TensorStructInfo((2, 3), dtype="")
)
_check_inference(bb, relax.op.ccl.broadcast_from_worker0(x4), relax.TensorStructInfo(dtype=""))
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x5), relax.TensorStructInfo((3, 4), dtype="")
)
def test_broadcast_from_worker0_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
m = tir.Var("m", "int64")
n = tir.Var("n", "int64")
x0 = relax.Var("x", R.Tensor((m, n), "float32"))
x1 = relax.Var("x", R.Tensor((4, n), "float32"))
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x0), relax.TensorStructInfo((m, n), "float32")
)
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x1), relax.TensorStructInfo((4, n), "float32")
)
def test_broadcast_from_worker0_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s", relax.ShapeStructInfo(ndim=2))
s1 = relax.Var("s", relax.ShapeStructInfo())
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x0), relax.TensorStructInfo(s0, "float32")
)
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x1), relax.TensorStructInfo(s1, "float32")
)
def test_broadcast_from_worker0_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float64"))
x1 = relax.Var("x", R.Tensor((2, 3), "int8"))
x2 = relax.Var("x", R.Tensor((2, 3), "int64"))
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x0), relax.TensorStructInfo((2, 3), "float64")
)
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x1), relax.TensorStructInfo((2, 3), "int8")
)
_check_inference(
bb, relax.op.ccl.broadcast_from_worker0(x2), relax.TensorStructInfo((2, 3), "int64")
)
def test_scatter_from_worker0_infer_struct_info():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float32"))
x1 = relax.Var("x", R.Tensor((3, 4, 5)))
_check_inference(
bb, relax.op.ccl.scatter_from_worker0(x0, 2), relax.TensorStructInfo((1, 3), "float32")
)
_check_inference(
bb, relax.op.ccl.scatter_from_worker0(x1, 3), relax.TensorStructInfo((1, 4, 5), dtype="")
)
def test_scatter_from_worker0_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
m = tir.Var("m", "int64")
n = tir.Var("n", "int64")
x0 = relax.Var("x", R.Tensor((m, n), "float32"))
x1 = relax.Var("x", R.Tensor((4, n), "float32"))
_check_inference(
bb,
relax.op.ccl.scatter_from_worker0(x0, 2),
relax.TensorStructInfo((tir.div(m, 2), n), "float32"),
)
_check_inference(
bb, relax.op.ccl.scatter_from_worker0(x1, 2), relax.TensorStructInfo((2, n), "float32")
)
def test_scatter_from_worker0_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s", relax.ShapeStructInfo((2, 4, 8)))
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
_check_inference(
bb, relax.op.ccl.scatter_from_worker0(x0, 2), relax.TensorStructInfo((1, 4, 8), "float32")
)
def test_scatter_from_worker0_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float64"))
x1 = relax.Var("x", R.Tensor((2, 3), "int8"))
x2 = relax.Var("x", R.Tensor((2, 3), "int64"))
_check_inference(
bb, relax.op.ccl.scatter_from_worker0(x0, 2), relax.TensorStructInfo((1, 3), "float64")
)
_check_inference(
bb, relax.op.ccl.scatter_from_worker0(x1, 2), relax.TensorStructInfo((1, 3), "int8")
)
_check_inference(
bb, relax.op.ccl.scatter_from_worker0(x2, 2), relax.TensorStructInfo((1, 3), "int64")
)
if __name__ == "__main__":
tvm.testing.main()