blob: 52b2a29f59c01bd2ae5e5c797cdc2ea4359dc65e [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
import tvm.testing
import sys
import pytest
from tvm import te
import numpy as np
def test_const_saveload_json():
# save load json
x = tvm.tir.const(1, "int32")
y = tvm.tir.const(10, "int32")
z = x + y
z = z + z
json_str = tvm.ir.save_json(z)
zz = tvm.ir.load_json(json_str)
tvm.ir.assert_structural_equal(zz, z, map_free_vars=True)
def _test_infinity_value(value, dtype):
x = tvm.tir.const(value, dtype)
json_str = tvm.ir.save_json(x)
tvm.ir.assert_structural_equal(x, tvm.ir.load_json(json_str))
def test_infinity_value():
_test_infinity_value(float("inf"), "float64")
_test_infinity_value(float("-inf"), "float64")
_test_infinity_value(float("inf"), "float32")
_test_infinity_value(float("-inf"), "float32")
def _test_minmax_value(value):
json_str = tvm.ir.save_json(value)
tvm.ir.assert_structural_equal(value, tvm.ir.load_json(json_str))
def test_minmax_value():
_test_minmax_value(tvm.tir.min_value("float32"))
_test_minmax_value(tvm.tir.max_value("float32"))
def test_make_smap():
# save load json
x = tvm.tir.const(1, "int32")
y = tvm.tir.const(10, "int32")
z = tvm.tir.Add(x, y)
smap = tvm.runtime.convert({"z": z, "x": x})
json_str = tvm.ir.save_json(tvm.runtime.convert([smap]))
arr = tvm.ir.load_json(json_str)
assert len(arr) == 1
assert arr[0]["z"].a == arr[0]["x"]
tvm.ir.assert_structural_equal(arr, [smap], map_free_vars=True)
def test_make_node():
x = tvm.ir.make_node("ir.IntImm", dtype="int32", value=10, span=None)
assert isinstance(x, tvm.tir.IntImm)
assert x.value == 10
A = te.placeholder((10,), name="A")
AA = tvm.ir.make_node(
"te.Tensor", shape=A.shape, dtype=A.dtype, op=A.op, value_index=A.value_index
)
assert AA.op == A.op
assert AA.value_index == A.value_index
y = tvm.ir.make_node("ir.IntImm", dtype=tvm.runtime.String("int32"), value=10, span=None)
def test_make_sum():
A = te.placeholder((2, 10), name="A")
k = te.reduce_axis((0, 10), "k")
B = te.compute((2,), lambda i: te.sum(A[i, k], axis=k), name="B")
json_str = tvm.ir.save_json(B)
BB = tvm.ir.load_json(json_str)
assert B.op.body[0].combiner is not None
assert BB.op.body[0].combiner is not None
def test_env_func():
@tvm.register_global_func("test.env_func")
def test(x):
return x + 1
f = tvm.get_global_func("test.env_func")
x = tvm.ir.EnvFunc.get("test.env_func")
assert x.name == "test.env_func"
json_str = tvm.ir.save_json([x])
y = tvm.ir.load_json(json_str)[0]
assert y.name == x.name
assert y(1) == 2
assert y.func(1) == 2
x = tvm.ir.make_node("attrs.TestAttrs", name="xx", padding=(3, 4), func=y)
assert x.name == "xx"
assert x.padding[0].value == 3
assert x.padding[1].value == 4
assert x.axis == 10
x = tvm.ir.load_json(tvm.ir.save_json(x))
assert isinstance(x.func, tvm.ir.EnvFunc)
assert x.func(10) == 11
def test_string():
# non printable str, need to store by b64
s1 = tvm.runtime.String("xy\x01z")
s2 = tvm.ir.load_json(tvm.ir.save_json(s1))
tvm.ir.assert_structural_equal(s1, s2)
# printable str, need to store by repr_str
s1 = tvm.runtime.String("xyz")
s2 = tvm.ir.load_json(tvm.ir.save_json(s1))
tvm.ir.assert_structural_equal(s1, s2)
def test_pass_config():
cfg = tvm.transform.PassContext(
opt_level=1,
config={
"tir.UnrollLoop": {
"auto_max_step": 10,
}
},
)
cfg.opt_level == 1
assert cfg.config["tir.UnrollLoop"].auto_max_step == 10
# default option
assert cfg.config["tir.UnrollLoop"].explicit_unroll == True
# schema checking for specific config key
with pytest.raises(TypeError):
cfg = tvm.transform.PassContext(config={"tir.UnrollLoop": {"invalid": 1}})
# schema check for un-registered config
with pytest.raises(AttributeError):
cfg = tvm.transform.PassContext(config={"inavlid-opt": True})
# schema check for wrong type
with pytest.raises(AttributeError):
cfg = tvm.transform.PassContext(config={"tir.UnrollLoop": 1})
def test_dict():
x = tvm.tir.const(1) # a class that has Python-defined methods
# instances should see the full class dict
assert set(dir(x.__class__)) <= set(dir(x))
def test_tensor():
dev = tvm.cpu(0)
tvm_arr = tvm.runtime.tensor(np.random.rand(4), device=dev)
tvm_arr2 = tvm.ir.load_json(tvm.ir.save_json(tvm_arr))
tvm.ir.assert_structural_equal(tvm_arr, tvm_arr2)
np.testing.assert_array_equal(tvm_arr.numpy(), tvm_arr2.numpy())
def test_tensor_dict():
dev = tvm.cpu(0)
m1 = {
"key1": tvm.runtime.tensor(np.random.rand(4), device=dev),
"key2": tvm.runtime.tensor(np.random.rand(4), device=dev),
}
m2 = tvm.ir.load_json(tvm.ir.save_json(m1))
tvm.ir.assert_structural_equal(m1, m2)
def test_free_var_equal():
x = tvm.tir.Var("x", dtype="int32")
y = tvm.tir.Var("y", dtype="int32")
z = tvm.tir.Var("z", dtype="int32")
v1 = x + y
v1 = y + z
tvm.ir.assert_structural_equal(x, z, map_free_vars=True)
def test_alloc_const():
dev = tvm.cpu(0)
dtype = "float32"
shape = (16,)
buf = tvm.tir.decl_buffer(shape, dtype)
np_data = np.random.rand(*shape).astype(dtype)
data = tvm.runtime.tensor(np_data, device=dev)
body = tvm.tir.Evaluate(0)
alloc_const = tvm.tir.AllocateConst(buf.data, dtype, shape, data, body)
alloc_const2 = tvm.ir.load_json(tvm.ir.save_json(alloc_const))
tvm.ir.assert_structural_equal(alloc_const, alloc_const2)
np.testing.assert_array_equal(np_data, alloc_const2.data.numpy())
if __name__ == "__main__":
tvm.testing.main()