| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import tvm |
| import tvm.testing |
| import sys |
| import pytest |
| from tvm import te |
| import numpy as np |
| |
| |
| def test_const_saveload_json(): |
| # save load json |
| x = tvm.tir.const(1, "int32") |
| y = tvm.tir.const(10, "int32") |
| z = x + y |
| z = z + z |
| json_str = tvm.ir.save_json(z) |
| zz = tvm.ir.load_json(json_str) |
| tvm.ir.assert_structural_equal(zz, z, map_free_vars=True) |
| |
| |
| def _test_infinity_value(value, dtype): |
| x = tvm.tir.const(value, dtype) |
| json_str = tvm.ir.save_json(x) |
| tvm.ir.assert_structural_equal(x, tvm.ir.load_json(json_str)) |
| |
| |
| def test_infinity_value(): |
| _test_infinity_value(float("inf"), "float64") |
| _test_infinity_value(float("-inf"), "float64") |
| _test_infinity_value(float("inf"), "float32") |
| _test_infinity_value(float("-inf"), "float32") |
| |
| |
| def _test_minmax_value(value): |
| json_str = tvm.ir.save_json(value) |
| tvm.ir.assert_structural_equal(value, tvm.ir.load_json(json_str)) |
| |
| |
| def test_minmax_value(): |
| _test_minmax_value(tvm.tir.min_value("float32")) |
| _test_minmax_value(tvm.tir.max_value("float32")) |
| |
| |
| def test_make_smap(): |
| # save load json |
| x = tvm.tir.const(1, "int32") |
| y = tvm.tir.const(10, "int32") |
| z = tvm.tir.Add(x, y) |
| smap = tvm.runtime.convert({"z": z, "x": x}) |
| json_str = tvm.ir.save_json(tvm.runtime.convert([smap])) |
| arr = tvm.ir.load_json(json_str) |
| assert len(arr) == 1 |
| assert arr[0]["z"].a == arr[0]["x"] |
| tvm.ir.assert_structural_equal(arr, [smap], map_free_vars=True) |
| |
| |
| def test_make_node(): |
| x = tvm.ir.make_node("ir.IntImm", dtype="int32", value=10, span=None) |
| assert isinstance(x, tvm.tir.IntImm) |
| assert x.value == 10 |
| A = te.placeholder((10,), name="A") |
| AA = tvm.ir.make_node( |
| "te.Tensor", shape=A.shape, dtype=A.dtype, op=A.op, value_index=A.value_index |
| ) |
| assert AA.op == A.op |
| assert AA.value_index == A.value_index |
| |
| y = tvm.ir.make_node("ir.IntImm", dtype=tvm.runtime.String("int32"), value=10, span=None) |
| |
| |
| def test_make_sum(): |
| A = te.placeholder((2, 10), name="A") |
| k = te.reduce_axis((0, 10), "k") |
| B = te.compute((2,), lambda i: te.sum(A[i, k], axis=k), name="B") |
| json_str = tvm.ir.save_json(B) |
| BB = tvm.ir.load_json(json_str) |
| assert B.op.body[0].combiner is not None |
| assert BB.op.body[0].combiner is not None |
| |
| |
| def test_env_func(): |
| @tvm.register_global_func("test.env_func") |
| def test(x): |
| return x + 1 |
| |
| f = tvm.get_global_func("test.env_func") |
| x = tvm.ir.EnvFunc.get("test.env_func") |
| assert x.name == "test.env_func" |
| json_str = tvm.ir.save_json([x]) |
| y = tvm.ir.load_json(json_str)[0] |
| assert y.name == x.name |
| assert y(1) == 2 |
| assert y.func(1) == 2 |
| |
| x = tvm.ir.make_node("attrs.TestAttrs", name="xx", padding=(3, 4), func=y) |
| assert x.name == "xx" |
| assert x.padding[0].value == 3 |
| assert x.padding[1].value == 4 |
| assert x.axis == 10 |
| x = tvm.ir.load_json(tvm.ir.save_json(x)) |
| assert isinstance(x.func, tvm.ir.EnvFunc) |
| assert x.func(10) == 11 |
| |
| |
| def test_string(): |
| # non printable str, need to store by b64 |
| s1 = tvm.runtime.String("xy\x01z") |
| s2 = tvm.ir.load_json(tvm.ir.save_json(s1)) |
| tvm.ir.assert_structural_equal(s1, s2) |
| |
| # printable str, need to store by repr_str |
| s1 = tvm.runtime.String("xyz") |
| s2 = tvm.ir.load_json(tvm.ir.save_json(s1)) |
| tvm.ir.assert_structural_equal(s1, s2) |
| |
| |
| def test_pass_config(): |
| cfg = tvm.transform.PassContext( |
| opt_level=1, |
| config={ |
| "tir.UnrollLoop": { |
| "auto_max_step": 10, |
| } |
| }, |
| ) |
| cfg.opt_level == 1 |
| |
| assert cfg.config["tir.UnrollLoop"].auto_max_step == 10 |
| # default option |
| assert cfg.config["tir.UnrollLoop"].explicit_unroll == True |
| |
| # schema checking for specific config key |
| with pytest.raises(TypeError): |
| cfg = tvm.transform.PassContext(config={"tir.UnrollLoop": {"invalid": 1}}) |
| |
| # schema check for un-registered config |
| with pytest.raises(AttributeError): |
| cfg = tvm.transform.PassContext(config={"inavlid-opt": True}) |
| |
| # schema check for wrong type |
| with pytest.raises(AttributeError): |
| cfg = tvm.transform.PassContext(config={"tir.UnrollLoop": 1}) |
| |
| |
| def test_dict(): |
| x = tvm.tir.const(1) # a class that has Python-defined methods |
| # instances should see the full class dict |
| assert set(dir(x.__class__)) <= set(dir(x)) |
| |
| |
| def test_tensor(): |
| dev = tvm.cpu(0) |
| tvm_arr = tvm.runtime.tensor(np.random.rand(4), device=dev) |
| tvm_arr2 = tvm.ir.load_json(tvm.ir.save_json(tvm_arr)) |
| tvm.ir.assert_structural_equal(tvm_arr, tvm_arr2) |
| np.testing.assert_array_equal(tvm_arr.numpy(), tvm_arr2.numpy()) |
| |
| |
| def test_tensor_dict(): |
| dev = tvm.cpu(0) |
| m1 = { |
| "key1": tvm.runtime.tensor(np.random.rand(4), device=dev), |
| "key2": tvm.runtime.tensor(np.random.rand(4), device=dev), |
| } |
| m2 = tvm.ir.load_json(tvm.ir.save_json(m1)) |
| tvm.ir.assert_structural_equal(m1, m2) |
| |
| |
| def test_free_var_equal(): |
| x = tvm.tir.Var("x", dtype="int32") |
| y = tvm.tir.Var("y", dtype="int32") |
| z = tvm.tir.Var("z", dtype="int32") |
| v1 = x + y |
| v1 = y + z |
| tvm.ir.assert_structural_equal(x, z, map_free_vars=True) |
| |
| |
| def test_alloc_const(): |
| dev = tvm.cpu(0) |
| dtype = "float32" |
| shape = (16,) |
| buf = tvm.tir.decl_buffer(shape, dtype) |
| np_data = np.random.rand(*shape).astype(dtype) |
| data = tvm.runtime.tensor(np_data, device=dev) |
| body = tvm.tir.Evaluate(0) |
| alloc_const = tvm.tir.AllocateConst(buf.data, dtype, shape, data, body) |
| alloc_const2 = tvm.ir.load_json(tvm.ir.save_json(alloc_const)) |
| tvm.ir.assert_structural_equal(alloc_const, alloc_const2) |
| np.testing.assert_array_equal(np_data, alloc_const2.data.numpy()) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |