blob: 50838a7c863f8c3279fe0311f5d5df07dee0c6e3 [file] [log] [blame]
import tvm
import topi
import topi.testing
import numpy as np
from tvm.contrib.pickle_memoize import memoize
from scipy import signal
from topi.util import get_const_tuple
from topi.nn.util import get_pad_tuple
from topi.cuda.depthwise_conv2d import schedule_depthwise_conv2d_backward_weight_nhwc
def verify_depthwise_conv2d_back_weight(batch, in_channel, in_h, channel_multiplier, filter_h, stride_h, padding_h):
in_w = in_h
filter_channel = in_channel
filter_w = filter_h
stride_w = stride_h
padding_w = padding_h
out_h = np.int((in_h+2*padding_h-filter_h)/stride_h+1)
out_w = np.int((in_w+2*padding_w-filter_w)/stride_w+1)
out_channel = in_channel * channel_multiplier
oshape = [batch, out_h, out_w, out_channel]
fshape = [filter_h, filter_w, in_channel, channel_multiplier]
# placeholder
Out_grad = tvm.placeholder(oshape, name='Out_grad')
Input = tvm.placeholder((batch, in_h, in_w, in_channel), name='In_grad')
# declare
Weight_grad = topi.nn.depthwise_conv2d_backward_weight_nhwc(Input, Out_grad, oshape, fshape,
stride=[stride_h, stride_w], padding=[padding_h, padding_w])
# schedule
schedule = schedule_depthwise_conv2d_backward_weight_nhwc(Weight_grad)
def check_device(device):
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
print("Running on target: %s" % device)
# build the kernel
f = tvm.build(schedule, [Input, Out_grad, Weight_grad], device)
# prepare pod type for test data closure
dtype = Out_grad.dtype
out_grad_shape = get_const_tuple(Out_grad.shape)
in_shape = get_const_tuple(Input.shape)
# use memoize to pickle the test data for next time use
@memoize("topi.tests.test_topi_depthwise_conv2d_backward_weight.nhwc")
def get_ref_data():
out_grad_np = np.random.uniform(size=out_grad_shape).astype(dtype)
input_np = np.random.uniform(size=in_shape).astype(dtype)
dilated_out_grad_np = topi.testing.dilate_python(out_grad_np, [1, stride_h, stride_w, 1])
pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple([padding_h, padding_w], (filter_h, filter_w))
padded_input_np = np.zeros((batch, in_h+pad_top+pad_bottom, in_w+pad_left+pad_right, in_channel))
padded_input_np[:, pad_top:in_h+pad_top, pad_left:in_w+pad_left, :] = input_np
weight_grad_np = np.zeros((filter_h, filter_w, in_channel, channel_multiplier))
for c in range(in_channel):
for m in range(channel_multiplier):
for b in range(batch):
weight_grad_np[:, :, c, m] += signal.convolve2d(padded_input_np[b, :, :, c], \
np.rot90(dilated_out_grad_np[b, :, :, c*channel_multiplier+m%channel_multiplier], 2), \
mode='valid')[0:filter_h, 0:filter_w]
return (out_grad_np, input_np, weight_grad_np)
(out_grad_np, input_np, weight_grad_np) = get_ref_data()
out_grad_tvm = tvm.nd.array(out_grad_np, ctx)
input_tvm = tvm.nd.array(input_np, ctx)
weight_grad_tvm = tvm.nd.array(np.zeros(shape=fshape, dtype=dtype), ctx)
# launch the kernel
timer = f.time_evaluator(f.entry_name, ctx, number=1)
tcost = timer(input_tvm, out_grad_tvm, weight_grad_tvm).mean
tvm.testing.assert_allclose(weight_grad_np, weight_grad_tvm.asnumpy(), rtol=1e-4)
check_device("opencl")
check_device("cuda")
check_device("metal")
check_device("rocm")
check_device("vulkan")
check_device("nvptx")
def test_topi_depthwise_conv2d_backward_weight_nhwc():
verify_depthwise_conv2d_back_weight(16, 256, 56, 1, 3, 1, 1)
verify_depthwise_conv2d_back_weight(16, 256, 56, 2, 3, 1, 1)
verify_depthwise_conv2d_back_weight(16, 256, 56, 1, 5, 1, 2)
verify_depthwise_conv2d_back_weight(16, 256, 56, 2, 5, 1, 2)
verify_depthwise_conv2d_back_weight(16, 256, 56, 1, 3, 2, 1)
verify_depthwise_conv2d_back_weight(16, 256, 56, 2, 3, 2, 1)
verify_depthwise_conv2d_back_weight(16, 256, 56, 1, 5, 2, 2)
verify_depthwise_conv2d_back_weight(16, 256, 56, 2, 5, 2, 2)
verify_depthwise_conv2d_back_weight(16, 256, 56, 1, 3, 1, 0)
verify_depthwise_conv2d_back_weight(16, 256, 56, 2, 3, 1, 0)
verify_depthwise_conv2d_back_weight(16, 256, 56, 1, 5, 1, 0)
verify_depthwise_conv2d_back_weight(16, 256, 56, 2, 5, 1, 0)
verify_depthwise_conv2d_back_weight(16, 256, 56, 1, 3, 2, 0)
verify_depthwise_conv2d_back_weight(16, 256, 56, 2, 3, 2, 0)
verify_depthwise_conv2d_back_weight(16, 256, 56, 1, 5, 2, 0)
verify_depthwise_conv2d_back_weight(15, 256, 56, 2, 5, 2, 0)
if __name__ == "__main__":
test_topi_depthwise_conv2d_backward_weight_nhwc()