blob: 98c93dff99935c69d8842289398e5ff304de23d0 [file] [log] [blame]
import tvm
from tvm import autotvm
import topi
import topi.testing
import numpy as np
from topi.util import get_const_tuple
from topi.nn.util import get_pad_tuple
from tvm.contrib.pickle_memoize import memoize
from common import get_all_backend
def depthwise_conv2d_with_workload_nchw(batch, in_channel, in_height, channel_multiplier, filter_height, stride, padding, dilation=1):
in_width = in_height
filter_channel = in_channel
filter_width = filter_height
stride_h = stride_w = stride
if dilation == 1:
# here we transform the padding argument from 'str' to 'tuple' ,
# because we need this to match the "workload" tuple to the records in TopHub
pad_h, pad_w, _, _ = get_pad_tuple(padding, (filter_height, filter_width))
padding_args = (pad_h, pad_w)
else:
padding_args = padding
# placeholder
Input = tvm.placeholder((batch, in_channel, in_height, in_width), name='Input')
Filter = tvm.placeholder((filter_channel, channel_multiplier, filter_height, filter_width), name='Filter')
Scale = tvm.placeholder((in_channel * channel_multiplier,), name='Scale')
Shift = tvm.placeholder((in_channel * channel_multiplier,), name='Shift')
dtype = 'float32'
def check_device(device):
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
print("Running on target: %s" % device)
with tvm.target.create(device):
# declare
DepthwiseConv2d = topi.nn.depthwise_conv2d_nchw(Input, Filter,
(stride_h, stride_w), padding_args, dilation, dtype)
ScaleShift = topi.nn.scale_shift_nchw(DepthwiseConv2d, Scale, Shift)
Relu = topi.nn.relu(ScaleShift)
# schedule
s1 = topi.generic.schedule_depthwise_conv2d_nchw(DepthwiseConv2d)
s2 = topi.generic.schedule_depthwise_conv2d_nchw(ScaleShift)
s3 = topi.generic.schedule_depthwise_conv2d_nchw(Relu)
# build the kernels
f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device)
f2 = tvm.build(s2, [Input, Filter, Scale, Shift, ScaleShift], device)
f3 = tvm.build(s3, [Input, Filter, Scale, Shift, Relu], device)
# Prepare pod type for test data closure
input_shape = get_const_tuple(Input.shape)
filter_shape = get_const_tuple(Filter.shape)
scale_shape = get_const_tuple(Scale.shape)
shift_shape = get_const_tuple(Shift.shape)
scale_shift_shape = get_const_tuple(ScaleShift.shape)
# Use memoize, pickle the test data for next time use.
@memoize("topi.tests.test_topi_depthwise_conv2d.nchw")
def get_ref_data():
input_np = np.random.uniform(size=input_shape).astype(dtype)
filter_np = np.random.uniform(size=filter_shape).astype(dtype)
dilated_filter_np = topi.testing.dilate_python(filter_np, (1, 1, dilation, dilation))
scale_np = np.random.uniform(size=scale_shape).astype(dtype)
shift_np = np.random.uniform(size=shift_shape).astype(dtype)
# correctness with scipy
depthwise_conv2d_scipy = topi.testing.depthwise_conv2d_python_nchw(
input_np, dilated_filter_np, stride, padding)
scale_shift_scipy = np.zeros(shape=scale_shift_shape)
for c in range(in_channel * channel_multiplier):
scale_shift_scipy[:,c,:,:] = depthwise_conv2d_scipy[:,c,:,:] * scale_np[c] + shift_np[c]
relu_scipy = np.maximum(scale_shift_scipy, 0)
return (input_np, filter_np, scale_np, shift_np,
depthwise_conv2d_scipy, scale_shift_scipy, relu_scipy)
# Get the test data
(input_np, filter_np, scale_np, shift_np,
depthwise_conv2d_scipy, scale_shift_scipy, relu_scipy) = get_ref_data()
input_tvm = tvm.nd.array(input_np, ctx)
filter_tvm = tvm.nd.array(filter_np, ctx)
scale_tvm = tvm.nd.array(scale_np, ctx)
shift_tvm = tvm.nd.array(shift_np, ctx)
depthwise_conv2d_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(DepthwiseConv2d.shape), dtype=DepthwiseConv2d.dtype), ctx)
scale_shift_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(ScaleShift.shape), dtype=ScaleShift.dtype), ctx)
relu_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(Relu.shape), dtype=Relu.dtype), ctx)
# launch kernel 1 (depthwise_conv2d)
timer_1 = f1.time_evaluator(f1.entry_name, ctx, number=1)
tcost_1 = timer_1(input_tvm, filter_tvm, depthwise_conv2d_tvm).mean
# launch kernel 2 (depthwise_conv2d + scale_shift)
timer_2 = f2.time_evaluator(f2.entry_name, ctx, number=1)
tcost_2 = timer_2(input_tvm, filter_tvm, scale_tvm, shift_tvm, scale_shift_tvm).mean
# launch kernel 3 (depthwise_conv2d + scale_shift + relu)
timer_3 = f3.time_evaluator(f3.entry_name, ctx, number=1)
tcost_3 = timer_3(input_tvm, filter_tvm, scale_tvm, shift_tvm, relu_tvm).mean
tvm.testing.assert_allclose(depthwise_conv2d_tvm.asnumpy(), depthwise_conv2d_scipy, rtol=1e-5)
tvm.testing.assert_allclose(scale_shift_tvm.asnumpy(), scale_shift_scipy, rtol=1e-5)
tvm.testing.assert_allclose(relu_tvm.asnumpy(), relu_scipy, rtol=1e-5)
for device in get_all_backend():
with autotvm.tophub.context(device): # load tophub pre-tuned parameters
check_device(device)
def depthwise_conv2d_with_workload_nhwc(batch, in_channel, in_height, channel_multiplier, filter_height, stride_h, padding, dilation=1):
in_width = in_height
filter_channel = in_channel
filter_width = filter_height
stride_w = stride_h
if dilation == 1:
# here we transform the padding argument from 'str' to 'tuple' ,
# because we need this to match the "workload" tuple to the records in TopHub
pad_h, pad_w, _, _ = get_pad_tuple(padding, (filter_height, filter_width))
padding_args = (pad_h, pad_w)
else:
padding_args = padding
# placeholder
Input = tvm.placeholder((batch, in_height, in_width, in_channel), name='Input')
Filter = tvm.placeholder((filter_height, filter_width,filter_channel, channel_multiplier), name='Filter')
Scale = tvm.placeholder((in_channel * channel_multiplier,), name='Scale')
Shift = tvm.placeholder((in_channel * channel_multiplier,), name='Shift')
dtype = 'float32'
def check_device(device):
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
print("Running on target: %s" % device)
with tvm.target.create(device):
# declare
DepthwiseConv2d = topi.nn.depthwise_conv2d_nhwc(Input, Filter,
(stride_h, stride_w), padding_args, dilation, dtype)
ScaleShift = topi.nn.scale_shift_nhwc(DepthwiseConv2d, Scale, Shift)
Relu = topi.nn.relu(ScaleShift)
# schedule
s1 = topi.generic.schedule_depthwise_conv2d_nhwc(DepthwiseConv2d)
s2 = topi.generic.schedule_depthwise_conv2d_nhwc(ScaleShift)
s3 = topi.generic.schedule_depthwise_conv2d_nhwc(Relu)
# build the kernels
f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device)
f2 = tvm.build(s2, [Input, Filter, Scale, Shift, ScaleShift], device)
f3 = tvm.build(s3, [Input, Filter, Scale, Shift, Relu], device)
# Prepare pod type for test data closure
input_shape = get_const_tuple(Input.shape)
filter_shape = get_const_tuple(Filter.shape)
scale_shape = get_const_tuple(Scale.shape)
shift_shape = get_const_tuple(Shift.shape)
scale_shift_shape = get_const_tuple(ScaleShift.shape)
# Use memoize, pickle the test data for next time use.
@memoize("topi.tests.test_topi_depthwise_conv2d.nhwc.v2")
def get_ref_data():
input_np = np.random.uniform(size=input_shape).astype(dtype)
filter_np = np.random.uniform(size=filter_shape).astype(dtype)
dilated_filter_np = topi.testing.dilate_python(filter_np, (dilation, dilation, 1, 1))
scale_np = np.random.uniform(size=scale_shape).astype(dtype)
shift_np = np.random.uniform(size=shift_shape).astype(dtype)
# correctness with scipy
depthwise_conv2d_scipy = topi.testing.depthwise_conv2d_python_nhwc(
input_np, dilated_filter_np, stride=[stride_h, stride_w], padding=padding)
scale_shift_scipy = np.zeros(shape=scale_shift_shape)
for c in range(in_channel * channel_multiplier):
scale_shift_scipy[:,:,:,c] = depthwise_conv2d_scipy[:,:,:,c] * scale_np[c] + shift_np[c]
relu_scipy = np.maximum(scale_shift_scipy, 0)
return (input_np, filter_np, scale_np, shift_np,
depthwise_conv2d_scipy, scale_shift_scipy, relu_scipy)
# Get the test data
(input_np, filter_np, scale_np, shift_np,
depthwise_conv2d_scipy, scale_shift_scipy, relu_scipy) = get_ref_data()
# prepare data
input_tvm = tvm.nd.array(input_np, ctx)
filter_tvm = tvm.nd.array(filter_np, ctx)
scale_tvm = tvm.nd.array(scale_np, ctx)
shift_tvm = tvm.nd.array(shift_np, ctx)
depthwise_conv2d_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(DepthwiseConv2d.shape), dtype=DepthwiseConv2d.dtype), ctx)
scale_shift_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(ScaleShift.shape), dtype=ScaleShift.dtype), ctx)
relu_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(Relu.shape), dtype=Relu.dtype), ctx)
# launch kernel 1 (depthwise_conv2d)
timer_1 = f1.time_evaluator(f1.entry_name, ctx, number=1)
tcost_1 = timer_1(input_tvm, filter_tvm, depthwise_conv2d_tvm).mean
# launch kernel 2 (depthwise_conv2d + scale_shift)
timer_2 = f2.time_evaluator(f2.entry_name, ctx, number=1)
tcost_2 = timer_2(input_tvm, filter_tvm, scale_tvm, shift_tvm, scale_shift_tvm).mean
# launch kernel 3 (depthwise_conv2d + scale_shift + relu)
timer_3 = f3.time_evaluator(f3.entry_name, ctx, number=1)
tcost_3 = timer_3(input_tvm, filter_tvm, scale_tvm, shift_tvm, relu_tvm).mean
relu_scipy = np.maximum(scale_shift_scipy, 0)
tvm.testing.assert_allclose(depthwise_conv2d_tvm.asnumpy(), depthwise_conv2d_scipy, rtol=1e-5)
tvm.testing.assert_allclose(scale_shift_tvm.asnumpy(), scale_shift_scipy, rtol=1e-5)
tvm.testing.assert_allclose(relu_tvm.asnumpy(), relu_scipy, rtol=1e-5)
for device in get_all_backend():
with autotvm.tophub.context(device): # load tophub pre-tuned parameters
check_device(device)
def _transform_data(data, bn):
# NCHW -> NCHW[x]c
batch_size, channel, height, width = data.shape
data = np.reshape(data, (batch_size, channel//bn, bn, height, width))
data = np.transpose(data, (0, 1, 3, 4, 2))
return data
def _transform_kernel(kernel, bn):
# channel, channel_multiplier, kh, kw -> out_channel_chunk, kh, kw, out_channel_block
channel, channel_multiplier, kh, kw = kernel.shape
out_channel = channel * channel_multiplier
kernel = np.reshape(kernel, (out_channel//bn, bn, kh, kw))
kernel = np.transpose(kernel, (0, 2, 3, 1))
return kernel
def depthwise_conv2d_with_workload_NCHWc(batch, in_channel, in_height, channel_multiplier, filter_height, stride, padding, dilation=1):
in_width = in_height
filter_channel = in_channel
filter_width = filter_height
stride_h = stride_w = stride
assert dilation == 1, "depthwise_conv2d_NCHWc currently does not support dilation."
pad_h, pad_w, _, _ = get_pad_tuple(padding, (filter_height, filter_width))
padding_args = (pad_h, pad_w)
out_channel = filter_channel * channel_multiplier
# for testing functionality,
# we choose arbitrary block size that can divide the channel,
# regardless of the performance.
oc_block = 1
for bn in range(16, 0, -1):
if out_channel % bn == 0:
oc_block = bn
break
ic_block = 1
for bn in range(oc_block, 0, -1):
if in_channel % bn == 0:
ic_block = bn
break
# placeholder
Input = tvm.placeholder((batch, in_channel//ic_block, in_height, in_width, ic_block), name='Input')
Filter = tvm.placeholder((out_channel//oc_block, filter_height, filter_width, oc_block), name='Filter')
in_layout = "NCHW%dc" % ic_block
out_layout = "NCHW%dc" % oc_block
dtype = 'float32'
def check_device(device):
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
print("Running on target: %s" % device)
with tvm.target.create(device):
# declare
DepthwiseConv2d = topi.nn.depthwise_conv2d_NCHWc(Input, Filter,
(stride_h, stride_w),
padding_args,
(dilation, dilation),
in_layout,
out_layout, dtype)
# TODO: add scale_shift implement for NCHWc and add test here
Relu = topi.nn.relu(DepthwiseConv2d)
# schedule
s1 = topi.generic.schedule_depthwise_conv2d_nchw(DepthwiseConv2d)
s2 = topi.generic.schedule_depthwise_conv2d_nchw(Relu)
# build the kernels
f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device)
f2 = tvm.build(s2, [Input, Filter, Relu], device)
# Prepare pod type for test data closure
input_shape = (batch, in_channel, in_height, in_width)
filter_shape = (filter_channel, channel_multiplier, filter_height, filter_width)
# Use memoize, pickle the test data for next time use.
@memoize("topi.tests.test_topi_depthwise_conv2d.NCHWc")
def get_ref_data():
input_np = np.random.uniform(size=input_shape).astype(dtype)
filter_np = np.random.uniform(size=filter_shape).astype(dtype)
# correctness with scipy
depthwise_conv2d_scipy = topi.testing.depthwise_conv2d_python_nchw(
input_np, filter_np, stride, padding)
relu_scipy = np.maximum(depthwise_conv2d_scipy, 0)
return (_transform_data(input_np, ic_block),
_transform_kernel(filter_np, oc_block),
_transform_data(depthwise_conv2d_scipy, oc_block),
_transform_data(relu_scipy, oc_block))
# Get the test data
(input_np, filter_np, depthwise_conv2d_scipy, relu_scipy) = get_ref_data()
input_tvm = tvm.nd.array(input_np, ctx)
filter_tvm = tvm.nd.array(filter_np, ctx)
depthwise_conv2d_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(DepthwiseConv2d.shape),
dtype=DepthwiseConv2d.dtype), ctx)
relu_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(Relu.shape), dtype=Relu.dtype), ctx)
# launch kernel 1 (depthwise_conv2d)
f1(input_tvm, filter_tvm, depthwise_conv2d_tvm)
# launch kernel 2 (depthwise_conv2d + relu)
f2(input_tvm, filter_tvm, relu_tvm)
tvm.testing.assert_allclose(depthwise_conv2d_tvm.asnumpy(), depthwise_conv2d_scipy, rtol=1e-5)
tvm.testing.assert_allclose(relu_tvm.asnumpy(), relu_scipy, rtol=1e-5)
# test llvm only for now since depthwise_conv2d_NCHWc implement is missing in other backend.
for device in ["llvm"]:
with autotvm.tophub.context(device): # load tophub pre-tuned parameters
check_device(device)
def test_depthwise_conv2d():
# mobilenet workloads
depthwise_conv2d_with_workload_nchw(1, 32, 112, 1, 3, 1, "SAME")
depthwise_conv2d_with_workload_nchw(1, 64, 112, 1, 3, 2, "SAME")
depthwise_conv2d_with_workload_nchw(1, 128, 56, 1, 3, 1, "SAME")
depthwise_conv2d_with_workload_nchw(1, 128, 56, 1, 3, 2, "SAME")
depthwise_conv2d_with_workload_nchw(1, 256, 28, 1, 3, 1, "SAME")
depthwise_conv2d_with_workload_nchw(1, 256, 28, 1, 3, 2, "SAME")
depthwise_conv2d_with_workload_nchw(1, 512, 14, 1, 3, 1, "SAME")
depthwise_conv2d_with_workload_nchw(1, 512, 14, 1, 3, 2, "SAME")
depthwise_conv2d_with_workload_nchw(1, 1024, 7, 1, 3, 1, "SAME")
# NCHW
depthwise_conv2d_with_workload_nchw(1, 728, 32, 1, 3, 1, "SAME")
depthwise_conv2d_with_workload_nchw(4, 256, 64, 2, 5, 2, "SAME")
depthwise_conv2d_with_workload_nchw(1, 728, 32, 1, 3, 1, "VALID")
depthwise_conv2d_with_workload_nchw(4, 256, 64, 2, 5, 2, "VALID")
# dilation = 2
depthwise_conv2d_with_workload_nchw(1, 728, 64, 1, 3, 1, "SAME", dilation=2)
# NHWC
depthwise_conv2d_with_workload_nhwc(1, 728, 32, 1, 3, 1, "SAME")
depthwise_conv2d_with_workload_nhwc(4, 256, 64, 2, 5, 2, "SAME")
depthwise_conv2d_with_workload_nhwc(1, 728, 32, 1, 3, 1, "VALID")
depthwise_conv2d_with_workload_nhwc(4, 256, 64, 2, 5, 2, "VALID")
# dilation = 2
# disabled because it uses too large shared memory on cuda
# depthwise_conv2d_with_workload_nhwc(1, 728, 64, 1, 3, 1, "SAME", dilation=2)
# NCHW[x]c
depthwise_conv2d_with_workload_NCHWc(1, 728, 32, 1, 3, 1, "SAME")
depthwise_conv2d_with_workload_NCHWc(4, 256, 64, 2, 5, 2, "SAME")
depthwise_conv2d_with_workload_NCHWc(1, 728, 32, 1, 3, 1, "VALID")
depthwise_conv2d_with_workload_NCHWc(4, 256, 64, 2, 5, 2, "VALID")
if __name__ == "__main__":
test_depthwise_conv2d()