| """Example code to do convolution.""" |
| |
| import numpy as np |
| import tvm |
| from tvm import autotvm |
| from tvm.autotvm.task.space import FallbackConfigEntity |
| import topi |
| import topi.testing |
| from tvm.contrib.pickle_memoize import memoize |
| from topi.util import get_const_tuple |
| |
| |
| def verify_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation=1, add_bias=False, add_relu=False): |
| print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation)) |
| |
| in_height = in_width = in_size |
| |
| A = tvm.placeholder((batch, in_channel, in_height, in_width), name='A') |
| W = tvm.placeholder((num_filter, in_channel, kernel, kernel), name='W') |
| bias = tvm.placeholder((num_filter, 1, 1), name='bias') |
| |
| a_shape = get_const_tuple(A.shape) |
| w_shape = get_const_tuple(W.shape) |
| bias_shape = get_const_tuple(bias.shape) |
| dtype = A.dtype |
| |
| @memoize("topi.tests.test_topi_conv2d_nchw.verify_conv2d_nchw") |
| def get_ref_data(): |
| a_np = np.random.uniform(size=a_shape).astype(dtype) |
| w_np = np.random.uniform(size=w_shape).astype(dtype) |
| b_np = np.random.uniform(size=bias_shape).astype(dtype) |
| dw_np = topi.testing.dilate_python(w_np, (1, 1, dilation, dilation)) |
| c_np = topi.testing.conv2d_nchw_python(a_np, dw_np, stride, padding) |
| if add_bias: |
| b_np = np.random.uniform(size=bias_shape).astype(dtype) |
| c_np += b_np |
| if add_relu: |
| c_np = np.maximum(c_np, 0) |
| return a_np, w_np, b_np, c_np |
| |
| a_np, w_np, b_np, c_np = get_ref_data() |
| |
| def check_device(device): |
| ctx = tvm.context(device, 0) |
| if not ctx.exist: |
| print("Skip because %s is not enabled" % device) |
| return |
| print("Running on target: %s" % device) |
| with tvm.target.create(device): |
| C = topi.nn.conv2d(A, W, stride, padding, dilation, layout='NCHW', out_dtype=dtype) |
| if add_bias: |
| C = topi.add(C, bias) |
| if add_relu: |
| C = topi.nn.relu(C) |
| s = topi.generic.schedule_conv2d_nchw([C]) |
| |
| a = tvm.nd.array(a_np, ctx) |
| w = tvm.nd.array(w_np, ctx) |
| b = tvm.nd.array(b_np, ctx) |
| c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx) |
| if add_bias: |
| func = tvm.build(s, [A, W, bias, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation)) |
| func(a, w, b, c) |
| else: |
| func = tvm.build(s, [A, W, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation)) |
| func(a, w, c) |
| tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5) |
| |
| |
| for device in ['cuda', 'llvm -device=arm_cpu', 'opencl -device=mali']: |
| check_device(device) |
| |
| |
| class WinogradFallback(autotvm.FallbackContext): |
| def _query_inside(self, target, workload): |
| key = (target, workload) |
| if key in self.memory: |
| return self.memory[key] |
| cfg = FallbackConfigEntity() |
| cfg.template_key = 'winograd' |
| self.memory[key] = cfg |
| return cfg |
| |
| |
| def test_conv2d_nchw(): |
| autotvm.DispatchContext.current.silent = True |
| |
| with WinogradFallback(): |
| # resnet 18 workloads |
| verify_conv2d_nchw(1, 64, 56, 64, 3, 1, 1) |
| verify_conv2d_nchw(1, 128, 28, 128, 3, 1, 1) |
| verify_conv2d_nchw(1, 256, 14, 256, 3, 1, 1) |
| verify_conv2d_nchw(1, 512, 7, 512, 3, 1, 1) |
| |
| # batch size = 2 |
| verify_conv2d_nchw(2, 64, 56, 64, 3, 1, 1) |
| |
| # relu, bias |
| verify_conv2d_nchw(2, 64, 56, 64, 3, 1, 1, add_bias=True) |
| verify_conv2d_nchw(2, 64, 56, 64, 3, 1, 1, add_relu=True) |
| verify_conv2d_nchw(2, 64, 56, 64, 3, 1, 1, add_relu=True, add_bias=True) |
| |
| # werid workloads |
| verify_conv2d_nchw(1, 1, 1, 1, 3, 1, 1) |
| verify_conv2d_nchw(3, 3, 3, 3, 3, 1, 1) |
| verify_conv2d_nchw(2, 13, 71, 59, 3, 1, 1) |
| |
| if __name__ == "__main__": |
| test_conv2d_nchw() |