blob: 1ca7240a41b0cad78c1cd434ba0e8109af4d8923 [file] [log] [blame]
"""Example code to do convolution."""
import numpy as np
import tvm
from tvm import autotvm
from tvm.autotvm.task.space import FallbackConfigEntity
import topi
import topi.testing
from tvm.contrib.pickle_memoize import memoize
from topi.util import get_const_tuple
def verify_conv2d_nchw(batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation=1, add_bias=False, add_relu=False):
print("Workload: (%d, %d, %d, %d, %d, %d, %d, %d)" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation))
in_height = in_width = in_size
A = tvm.placeholder((batch, in_channel, in_height, in_width), name='A')
W = tvm.placeholder((num_filter, in_channel, kernel, kernel), name='W')
bias = tvm.placeholder((num_filter, 1, 1), name='bias')
a_shape = get_const_tuple(A.shape)
w_shape = get_const_tuple(W.shape)
bias_shape = get_const_tuple(bias.shape)
dtype = A.dtype
@memoize("topi.tests.test_topi_conv2d_nchw.verify_conv2d_nchw")
def get_ref_data():
a_np = np.random.uniform(size=a_shape).astype(dtype)
w_np = np.random.uniform(size=w_shape).astype(dtype)
b_np = np.random.uniform(size=bias_shape).astype(dtype)
dw_np = topi.testing.dilate_python(w_np, (1, 1, dilation, dilation))
c_np = topi.testing.conv2d_nchw_python(a_np, dw_np, stride, padding)
if add_bias:
b_np = np.random.uniform(size=bias_shape).astype(dtype)
c_np += b_np
if add_relu:
c_np = np.maximum(c_np, 0)
return a_np, w_np, b_np, c_np
a_np, w_np, b_np, c_np = get_ref_data()
def check_device(device):
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
print("Running on target: %s" % device)
with tvm.target.create(device):
C = topi.nn.conv2d(A, W, stride, padding, dilation, layout='NCHW', out_dtype=dtype)
if add_bias:
C = topi.add(C, bias)
if add_relu:
C = topi.nn.relu(C)
s = topi.generic.schedule_conv2d_nchw([C])
a = tvm.nd.array(a_np, ctx)
w = tvm.nd.array(w_np, ctx)
b = tvm.nd.array(b_np, ctx)
c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), ctx)
if add_bias:
func = tvm.build(s, [A, W, bias, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation))
func(a, w, b, c)
else:
func = tvm.build(s, [A, W, C], device, name="relu_%d_%d_%d_%d_%d_%d_%d_%d" % (batch, in_channel, in_size, num_filter, kernel, stride, padding, dilation))
func(a, w, c)
tvm.testing.assert_allclose(c.asnumpy(), c_np, rtol=1e-5)
for device in ['cuda', 'llvm -device=arm_cpu', 'opencl -device=mali']:
check_device(device)
class WinogradFallback(autotvm.FallbackContext):
def _query_inside(self, target, workload):
key = (target, workload)
if key in self.memory:
return self.memory[key]
cfg = FallbackConfigEntity()
cfg.template_key = 'winograd'
self.memory[key] = cfg
return cfg
def test_conv2d_nchw():
autotvm.DispatchContext.current.silent = True
with WinogradFallback():
# resnet 18 workloads
verify_conv2d_nchw(1, 64, 56, 64, 3, 1, 1)
verify_conv2d_nchw(1, 128, 28, 128, 3, 1, 1)
verify_conv2d_nchw(1, 256, 14, 256, 3, 1, 1)
verify_conv2d_nchw(1, 512, 7, 512, 3, 1, 1)
# batch size = 2
verify_conv2d_nchw(2, 64, 56, 64, 3, 1, 1)
# relu, bias
verify_conv2d_nchw(2, 64, 56, 64, 3, 1, 1, add_bias=True)
verify_conv2d_nchw(2, 64, 56, 64, 3, 1, 1, add_relu=True)
verify_conv2d_nchw(2, 64, 56, 64, 3, 1, 1, add_relu=True, add_bias=True)
# werid workloads
verify_conv2d_nchw(1, 1, 1, 1, 3, 1, 1)
verify_conv2d_nchw(3, 3, 3, 3, 3, 1, 1)
verify_conv2d_nchw(2, 13, 71, 59, 3, 1, 1)
if __name__ == "__main__":
test_conv2d_nchw()