blob: daf9b4a7f022f2e956cbc2672220e9eaf0011781 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Testing topi conv2d operator for VTA"""
import json
import os
import pytest
import numpy as np
from collections import namedtuple
import tvm
from tvm import te
from tvm import relay
from tvm import autotvm
from tvm.contrib import utils
from tvm.contrib.pickle_memoize import memoize
from tvm import topi
import tvm.topi.testing
import vta
from vta import program_fpga, reconfig_runtime
import vta.testing
from vta.testing import simulator
Workload = namedtuple(
"Conv2DWorkload",
[
"batch",
"height",
"width",
"in_filter",
"out_filter",
"hkernel",
"wkernel",
"hpad",
"wpad",
"hstride",
"wstride",
],
)
# Get batch info from env
env = vta.get_env()
# ResNet18 workloads
resnet_wkls = [
# Workloads of resnet18 on imagenet
# ('resnet-18.C1', Workload(env.BATCH, 224, 224, 3, 64, 7, 7, 3, 3, 2, 2)),
("resnet-18.C2", Workload(env.BATCH, 56, 56, 64, 64, 3, 3, 1, 1, 1, 1)),
("resnet-18.C3", Workload(env.BATCH, 56, 56, 64, 128, 3, 3, 1, 1, 2, 2)),
("resnet-18.C4", Workload(env.BATCH, 56, 56, 64, 128, 1, 1, 0, 0, 2, 2)),
("resnet-18.C5", Workload(env.BATCH, 28, 28, 128, 128, 3, 3, 1, 1, 1, 1)),
("resnet-18.C6", Workload(env.BATCH, 28, 28, 128, 256, 3, 3, 1, 1, 2, 2)),
("resnet-18.C7", Workload(env.BATCH, 28, 28, 128, 256, 1, 1, 0, 0, 2, 2)),
("resnet-18.C8", Workload(env.BATCH, 14, 14, 256, 256, 3, 3, 1, 1, 1, 1)),
("resnet-18.C9", Workload(env.BATCH, 14, 14, 256, 512, 3, 3, 1, 1, 2, 2)),
("resnet-18.C10", Workload(env.BATCH, 14, 14, 256, 512, 1, 1, 0, 0, 2, 2)),
("resnet-18.C11", Workload(env.BATCH, 7, 7, 512, 512, 3, 3, 1, 1, 1, 1)),
]
# FIXME: we need a custom clip operator to circumvent a pattern detection limitation
@tvm.te.tag_scope(tag=topi.tag.ELEMWISE)
def my_clip(x, a_min, a_max):
"""Unlike topi's current clip, put min and max into two stages."""
const_min = tvm.tir.const(a_min, x.dtype)
const_max = tvm.tir.const(a_max, x.dtype)
x = te.compute(x.shape, lambda *i: tvm.te.min(x(*i), const_max), name="clipA")
x = te.compute(x.shape, lambda *i: tvm.te.max(x(*i), const_min), name="clipB")
return x
def run_conv2d(env, remote, wl, target, check_correctness=True, print_ir=False, samples=4):
# Workload assertions
assert wl.hpad == wl.wpad
# Perform packing only if we are targeting the accelerator
if "arm_cpu" in target.keys:
data_pack = False
layout = "NCHW"
conv2d_fcompute = topi.arm_cpu.conv2d_nchw_spatial_pack
conv2d_fschedule = topi.arm_cpu.schedule_conv2d_nchw_spatial_pack
elif "vta" in target.keys:
data_pack = True
layout = "NCHW%dn%dc" % (env.BATCH, env.BLOCK_IN)
conv2d_fcompute = vta.top.conv2d_packed
conv2d_fschedule = vta.top.schedule_conv2d_packed
# Derive shapes depending upon packing
a_shape = (wl.batch, wl.in_filter, wl.height, wl.width)
w_shape = (wl.out_filter, wl.in_filter, wl.hkernel, wl.wkernel)
b_shape = (wl.batch, wl.out_filter, 1, 1)
if data_pack:
data_shape = (
wl.batch // env.BATCH,
wl.in_filter // env.BLOCK_IN,
wl.height,
wl.width,
env.BATCH,
env.BLOCK_IN,
)
kernel_shape = (
wl.out_filter // env.BLOCK_OUT,
wl.in_filter // env.BLOCK_IN,
wl.hkernel,
wl.wkernel,
env.BLOCK_OUT,
env.BLOCK_IN,
)
bias_shape = (
wl.batch // env.BATCH,
wl.out_filter // env.BLOCK_OUT,
1,
1,
env.BATCH,
env.BLOCK_OUT,
)
else:
data_shape = a_shape
kernel_shape = w_shape
bias_shape = b_shape
data = te.placeholder(data_shape, name="data", dtype=env.inp_dtype)
kernel = te.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
bias = te.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)
padding = relay.nn.get_pad_tuple2d((wl.hpad, wl.wpad))
# Define base computation schedule
with target:
if data_pack:
res = conv2d_fcompute(
data, kernel, (wl.hstride, wl.wstride), padding, (1, 1), layout, env.acc_dtype
)
else:
res = conv2d_fcompute(
data, kernel, (wl.hstride, wl.wstride), padding, (1, 1), env.acc_dtype
)
res = topi.right_shift(res, 8)
res = topi.add(res, bias)
res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
res = topi.cast(res, env.out_dtype)
# Derive base schedule
s = conv2d_fschedule([res])
if print_ir:
print(vta.lower(s, [data, kernel, bias, res], simple_mode=True))
# Derive number of ops
fout_height = (wl.height + 2 * wl.hpad - wl.hkernel) // wl.hstride + 1
fout_width = (wl.width + 2 * wl.wpad - wl.wkernel) // wl.wstride + 1
num_ops = (
2
* wl.batch
* fout_height
* fout_width
* wl.hkernel
* wl.wkernel
* wl.out_filter
* wl.in_filter
)
# @memoize("vta.tests.test_benchmark_topi.conv2d.verify_nhwc")
def get_ref_data():
# derive min max for act, wgt, and bias types (max non inclusive)
a_min, a_max = 0 - (1 << (env.INP_WIDTH - 1)), (1 << (env.INP_WIDTH - 1))
w_min, w_max = 0 - (1 << (env.WGT_WIDTH - 1)), (1 << (env.WGT_WIDTH - 1))
b_min, b_max = 0 - 1 << (env.INP_WIDTH + env.WGT_WIDTH - 2), 1 << (
env.INP_WIDTH + env.WGT_WIDTH - 2
)
a_np = np.random.randint(a_min, a_max, size=a_shape).astype(data.dtype)
w_np = np.random.randint(w_min, w_max, size=w_shape).astype(kernel.dtype)
b_np = np.random.randint(b_min, b_max, size=b_shape).astype(env.acc_dtype)
r_np = tvm.topi.testing.conv2d_nchw_python(
a_np.astype(env.acc_dtype),
w_np.astype(env.acc_dtype),
(wl.hstride, wl.wstride),
wl.hpad,
).astype(env.acc_dtype)
return a_np, w_np, b_np, r_np
# Data in original format
data_np, kernel_np, bias_np, res_ref = get_ref_data()
if data_pack:
data_np = data_np.reshape(
wl.batch // env.BATCH,
env.BATCH,
wl.in_filter // env.BLOCK_IN,
env.BLOCK_IN,
wl.height,
wl.width,
).transpose((0, 2, 4, 5, 1, 3))
kernel_np = kernel_np.reshape(
wl.out_filter // env.BLOCK_OUT,
env.BLOCK_OUT,
wl.in_filter // env.BLOCK_IN,
env.BLOCK_IN,
wl.hkernel,
wl.wkernel,
).transpose((0, 2, 4, 5, 1, 3))
bias_np = bias_np.reshape(
wl.batch // env.BATCH, wl.out_filter // env.BLOCK_OUT, 1, 1, env.BATCH, env.BLOCK_OUT
)
# Build
if "vta" in target.keys:
mod = vta.build(
s, [data, kernel, bias, res], target=target, target_host=env.target_host, name="conv2d"
)
else:
mod = tvm.build(
s, [data, kernel, bias, res], target=target, target_host=env.target_host, name="conv2d"
)
temp = utils.tempdir()
mod.save(temp.relpath("conv2d.o"))
remote.upload(temp.relpath("conv2d.o"))
f = remote.load_module("conv2d.o")
dev = remote.device(str(target))
res_np = np.zeros(topi.utils.get_const_tuple(res.shape)).astype(res.dtype)
data_arr = tvm.nd.array(data_np, dev)
kernel_arr = tvm.nd.array(kernel_np, dev)
bias_arr = tvm.nd.array(bias_np, dev)
res_arr = tvm.nd.array(res_np, dev)
time_f = f.time_evaluator("conv2d", dev, number=samples)
# In vta sim mode, collect simulator runtime statistics
stats = {}
cost = None
if env.TARGET in ["sim", "tsim"]:
# Check if we're in local RPC mode (allows us to rebuild the
# runtime on the fly when varying the VTA designs)
local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0"))
if local_rpc:
if env.TARGET == "sim":
remote.get_function("vta.simulator.profiler_clear")()
else:
remote.get_function("vta.tsim.profiler_clear")()
cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
if env.TARGET == "sim":
stats = json.loads(remote.get_function("vta.simulator.profiler_status")())
else:
stats = json.loads(remote.get_function("vta.tsim.profiler_status")())
else:
simulator.clear_stats()
cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
stats = simulator.stats()
else:
cost = time_f(data_arr, kernel_arr, bias_arr, res_arr)
# Check correctness
correct = False
if check_correctness:
res_orig = res_arr.asnumpy()
if data_pack:
res_orig = res_orig.transpose((0, 4, 1, 5, 2, 3)).reshape(
wl.batch, wl.out_filter, fout_height, fout_width
)
bias_np = bias_np.transpose((0, 4, 1, 5, 2, 3)).reshape(wl.batch, wl.out_filter, 1, 1)
res_ref = res_ref >> env.WGT_WIDTH
res_ref += bias_np
res_ref = np.clip(res_ref, 0, (1 << env.OUT_WIDTH - 1) - 1)
res_ref = res_ref.astype(env.out_dtype)
correct = np.allclose(res_orig, res_ref)
gops = (num_ops / cost.mean) / float(10 ** 9)
status = "PASSED" if correct else "FAILED"
if "arm_cpu" in target.keys:
device = "CPU"
elif "vta" in target.keys:
device = "VTA"
print("%s CONV2D TEST %s: Time cost = %g sec/op, %g GOPS" % (device, status, cost.mean, gops))
return correct, cost, stats
@pytest.mark.parametrize("device", ["vta", "arm_cpu"])
def test_conv2d(device):
def _run(env, remote):
if device == "vta":
target = env.target
if env.TARGET not in ["sim", "tsim", "intelfocl"]:
assert tvm.runtime.enabled("rpc")
program_fpga(remote, bitstream=None)
reconfig_runtime(remote)
elif device == "arm_cpu":
target = env.target_vta_cpu
with autotvm.tophub.context(target): # load pre-tuned schedule parameters
for _, wl in resnet_wkls:
print(wl)
run_conv2d(env, remote, wl, target)
vta.testing.run(_run)
if __name__ == "__main__":
test_conv2d(device="arm_cpu")
test_conv2d(device="vta")