blob: 6c2ed6eeae21218a03e197dd2bac801847b075c3 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Example code to do convolution."""
import numpy as np
import tvm
from tvm import te
from tvm import autotvm
from tvm import topi
import tvm.testing
import tvm.topi.testing
from tvm.contrib.pickle_memoize import memoize
from tvm.topi.nn.utils import get_pad_tuple3d
from tvm.topi.utils import get_const_tuple
_conv3d_ncdhw_implement = {
"generic": (topi.nn.conv3d_ncdhw, topi.generic.schedule_conv3d_ncdhw),
"cpu": (topi.x86.conv3d_ncdhw, topi.x86.schedule_conv3d_ncdhw),
"gpu": (topi.cuda.conv3d_ncdhw, topi.cuda.schedule_conv3d_ncdhw),
}
def verify_conv3d_ncdhw(
batch,
in_channel,
in_size,
num_filter,
kernel,
stride,
padding,
dilation=1,
groups=1,
add_bias=False,
add_relu=False,
):
if isinstance(kernel, (tuple, list)):
if len(kernel) == 3:
kernel_d = kernel[0]
kernel_h = kernel[1]
kernel_w = kernel[2]
else:
raise ValueError("Size of kernel can only be 3")
elif isinstance(kernel, int):
kernel_d = kernel_h = kernel_w = kernel
else:
raise ValueError("Unknown kernel option %s" % kernel)
pad_front, pad_top, pad_left, pad_back, pad_bottom, pad_right = get_pad_tuple3d(
padding, (kernel_d, kernel_h, kernel_w)
)
padding_sum = pad_front + pad_back + pad_top + pad_left + pad_bottom + pad_right
print(
"Workload: (%d, %d, %d, %d, %d, %d, %d, %d, %d, %d)"
% (
batch,
in_channel,
in_size,
num_filter,
kernel_d,
kernel_h,
kernel_w,
stride,
padding_sum,
dilation,
)
)
in_depth = in_height = in_width = in_size
A = te.placeholder((batch, in_channel, in_depth, in_height, in_width), name="A")
W = te.placeholder((num_filter, in_channel // groups, kernel_d, kernel_h, kernel_w), name="W")
bias = te.placeholder((num_filter, 1, 1, 1), name="bias")
a_shape = get_const_tuple(A.shape)
w_shape = get_const_tuple(W.shape)
bias_shape = get_const_tuple(bias.shape)
dtype = A.dtype
@memoize("topi.tests.test_topi_conv3d_ncdhw.verify_conv3d_ncdhw")
def get_ref_data():
a_np = np.random.uniform(size=a_shape).astype(dtype)
w_np = np.random.uniform(size=w_shape).astype(dtype)
b_np = np.random.uniform(size=bias_shape).astype(dtype)
dw_np = tvm.topi.testing.dilate_python(w_np, (1, 1, dilation, dilation, dilation))
c_np = tvm.topi.testing.conv3d_ncdhw_python(a_np, dw_np, stride, padding, groups)
if add_bias:
c_np += b_np
if add_relu:
c_np = np.maximum(c_np, 0)
return a_np, w_np, b_np, c_np
a_np, w_np, b_np, c_np = get_ref_data()
def check_target(target, dev):
print("Running on target: %s" % target)
fcompute, fschedule = tvm.topi.testing.dispatch(target, _conv3d_ncdhw_implement)
with tvm.target.Target(target):
C = fcompute(
A,
W,
(stride, stride, stride),
padding,
(dilation, dilation, dilation),
groups,
dtype,
)
if add_bias:
C = topi.add(C, bias)
if add_relu:
C = topi.nn.relu(C)
s = fschedule([C])
a = tvm.nd.array(a_np, dev)
w = tvm.nd.array(w_np, dev)
b = tvm.nd.array(b_np, dev)
c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), dev)
if add_bias:
func = tvm.build(
s,
[A, W, bias, C],
target,
name="relu_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d"
% (
batch,
in_channel,
in_size,
num_filter,
kernel_d,
kernel_h,
kernel_w,
stride,
padding_sum,
dilation,
groups,
),
)
func(a, w, b, c)
else:
func = tvm.build(
s,
[A, W, C],
target,
name="relu_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d"
% (
batch,
in_channel,
in_size,
num_filter,
kernel_d,
kernel_h,
kernel_w,
stride,
padding_sum,
dilation,
groups,
),
)
func(a, w, c)
tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-4, atol=1e-6)
for target, dev in tvm.testing.enabled_targets():
with autotvm.tophub.context(target): # load tophub pre-tuned parameters
check_target(target, dev)
@tvm.testing.uses_gpu
def test_conv3d_ncdhw():
# 3DCNN workloads
verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, 0)
verify_conv3d_ncdhw(1, 32, 32, 1, 1, 1, 0)
verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, 1)
verify_conv3d_ncdhw(1, 32, 32, 1, 1, 1, 1)
# bias, relu
verify_conv3d_ncdhw(1, 64, 56, 3, 1, 1, 1, add_relu=True)
verify_conv3d_ncdhw(1, 64, 56, 3, 1, 1, 1, add_bias=True)
verify_conv3d_ncdhw(1, 64, 56, 3, 1, 1, 1, add_bias=True, add_relu=True)
# dilation = 2
verify_conv3d_ncdhw(1, 64, 56, 3, 3, 1, 1, dilation=2)
# batch size
verify_conv3d_ncdhw(4, 64, 56, 5, 3, 1, 1)
# weird workloads
verify_conv3d_ncdhw(2, 2, 2, 2, 2, 2, 2)
verify_conv3d_ncdhw(3, 3, 3, 3, 3, 3, 3)
# Asymmetric padding
verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, (0, 0, 0, 1, 1, 1))
verify_conv3d_ncdhw(1, 32, 32, 1, 1, 1, (2, 1, 2, 1, 2, 1))
verify_conv3d_ncdhw(1, 64, 56, 3, 3, 1, (2, 2, 2, 1, 1, 1), dilation=2)
verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, (0, 1, 1))
verify_conv3d_ncdhw(1, 32, 32, 1, 1, 1, (2, 1, 0))
verify_conv3d_ncdhw(1, 32, 32, 1, 3, 1, "VALID")
verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, "VALID")
# DHW kernel layout
verify_conv3d_ncdhw(1, 32, 56, 16, (3, 5, 7), 2, (1, 2, 3))
verify_conv3d_ncdhw(1, 3, 56, 16, (3, 7, 7), 2, (1, 2, 3, 0, 3, 2))
verify_conv3d_ncdhw(1, 3, 56, 16, (3, 3, 7), 2, (1, 2, 3))
verify_conv3d_ncdhw(1, 3, 56, 16, (3, 7, 3), 2, (1, 3, 1))
# grouped workloads
verify_conv3d_ncdhw(1, 32, 32, 8, 1, 1, 0, groups=4)
verify_conv3d_ncdhw(1, 32, 32, 4, 1, 1, 0, groups=4)
verify_conv3d_ncdhw(1, 32, 32, 8, 1, 1, 1, groups=4)
verify_conv3d_ncdhw(1, 32, 32, 4, 1, 1, 1, groups=4)
if __name__ == "__main__":
test_conv3d_ncdhw()