| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| """Example code to do convolution.""" |
| |
| import numpy as np |
| import tvm |
| from tvm import te |
| from tvm import autotvm |
| from tvm import topi |
| import tvm.testing |
| import tvm.topi.testing |
| from tvm.contrib.pickle_memoize import memoize |
| from tvm.topi.nn.utils import get_pad_tuple3d |
| from tvm.topi.utils import get_const_tuple |
| |
| _conv3d_ncdhw_implement = { |
| "generic": (topi.nn.conv3d_ncdhw, topi.generic.schedule_conv3d_ncdhw), |
| "cpu": (topi.x86.conv3d_ncdhw, topi.x86.schedule_conv3d_ncdhw), |
| "gpu": (topi.cuda.conv3d_ncdhw, topi.cuda.schedule_conv3d_ncdhw), |
| } |
| |
| |
| def verify_conv3d_ncdhw( |
| batch, |
| in_channel, |
| in_size, |
| num_filter, |
| kernel, |
| stride, |
| padding, |
| dilation=1, |
| groups=1, |
| add_bias=False, |
| add_relu=False, |
| ): |
| if isinstance(kernel, (tuple, list)): |
| if len(kernel) == 3: |
| kernel_d = kernel[0] |
| kernel_h = kernel[1] |
| kernel_w = kernel[2] |
| else: |
| raise ValueError("Size of kernel can only be 3") |
| elif isinstance(kernel, int): |
| kernel_d = kernel_h = kernel_w = kernel |
| else: |
| raise ValueError("Unknown kernel option %s" % kernel) |
| pad_front, pad_top, pad_left, pad_back, pad_bottom, pad_right = get_pad_tuple3d( |
| padding, (kernel_d, kernel_h, kernel_w) |
| ) |
| padding_sum = pad_front + pad_back + pad_top + pad_left + pad_bottom + pad_right |
| print( |
| "Workload: (%d, %d, %d, %d, %d, %d, %d, %d, %d, %d)" |
| % ( |
| batch, |
| in_channel, |
| in_size, |
| num_filter, |
| kernel_d, |
| kernel_h, |
| kernel_w, |
| stride, |
| padding_sum, |
| dilation, |
| ) |
| ) |
| |
| in_depth = in_height = in_width = in_size |
| |
| A = te.placeholder((batch, in_channel, in_depth, in_height, in_width), name="A") |
| W = te.placeholder((num_filter, in_channel // groups, kernel_d, kernel_h, kernel_w), name="W") |
| bias = te.placeholder((num_filter, 1, 1, 1), name="bias") |
| |
| a_shape = get_const_tuple(A.shape) |
| w_shape = get_const_tuple(W.shape) |
| bias_shape = get_const_tuple(bias.shape) |
| dtype = A.dtype |
| |
| @memoize("topi.tests.test_topi_conv3d_ncdhw.verify_conv3d_ncdhw") |
| def get_ref_data(): |
| a_np = np.random.uniform(size=a_shape).astype(dtype) |
| w_np = np.random.uniform(size=w_shape).astype(dtype) |
| b_np = np.random.uniform(size=bias_shape).astype(dtype) |
| dw_np = tvm.topi.testing.dilate_python(w_np, (1, 1, dilation, dilation, dilation)) |
| c_np = tvm.topi.testing.conv3d_ncdhw_python(a_np, dw_np, stride, padding, groups) |
| if add_bias: |
| c_np += b_np |
| if add_relu: |
| c_np = np.maximum(c_np, 0) |
| return a_np, w_np, b_np, c_np |
| |
| a_np, w_np, b_np, c_np = get_ref_data() |
| |
| def check_target(target, dev): |
| print("Running on target: %s" % target) |
| fcompute, fschedule = tvm.topi.testing.dispatch(target, _conv3d_ncdhw_implement) |
| with tvm.target.Target(target): |
| C = fcompute( |
| A, |
| W, |
| (stride, stride, stride), |
| padding, |
| (dilation, dilation, dilation), |
| groups, |
| dtype, |
| ) |
| if add_bias: |
| C = topi.add(C, bias) |
| if add_relu: |
| C = topi.nn.relu(C) |
| s = fschedule([C]) |
| |
| a = tvm.nd.array(a_np, dev) |
| w = tvm.nd.array(w_np, dev) |
| b = tvm.nd.array(b_np, dev) |
| c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), dev) |
| if add_bias: |
| func = tvm.build( |
| s, |
| [A, W, bias, C], |
| target, |
| name="relu_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d" |
| % ( |
| batch, |
| in_channel, |
| in_size, |
| num_filter, |
| kernel_d, |
| kernel_h, |
| kernel_w, |
| stride, |
| padding_sum, |
| dilation, |
| groups, |
| ), |
| ) |
| func(a, w, b, c) |
| else: |
| func = tvm.build( |
| s, |
| [A, W, C], |
| target, |
| name="relu_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d_%d" |
| % ( |
| batch, |
| in_channel, |
| in_size, |
| num_filter, |
| kernel_d, |
| kernel_h, |
| kernel_w, |
| stride, |
| padding_sum, |
| dilation, |
| groups, |
| ), |
| ) |
| func(a, w, c) |
| tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-4, atol=1e-6) |
| |
| for target, dev in tvm.testing.enabled_targets(): |
| with autotvm.tophub.context(target): # load tophub pre-tuned parameters |
| check_target(target, dev) |
| |
| |
| @tvm.testing.uses_gpu |
| def test_conv3d_ncdhw(): |
| # 3DCNN workloads |
| verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, 0) |
| verify_conv3d_ncdhw(1, 32, 32, 1, 1, 1, 0) |
| verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, 1) |
| verify_conv3d_ncdhw(1, 32, 32, 1, 1, 1, 1) |
| |
| # bias, relu |
| verify_conv3d_ncdhw(1, 64, 56, 3, 1, 1, 1, add_relu=True) |
| verify_conv3d_ncdhw(1, 64, 56, 3, 1, 1, 1, add_bias=True) |
| verify_conv3d_ncdhw(1, 64, 56, 3, 1, 1, 1, add_bias=True, add_relu=True) |
| |
| # dilation = 2 |
| verify_conv3d_ncdhw(1, 64, 56, 3, 3, 1, 1, dilation=2) |
| |
| # batch size |
| verify_conv3d_ncdhw(4, 64, 56, 5, 3, 1, 1) |
| |
| # weird workloads |
| verify_conv3d_ncdhw(2, 2, 2, 2, 2, 2, 2) |
| verify_conv3d_ncdhw(3, 3, 3, 3, 3, 3, 3) |
| |
| # Asymmetric padding |
| verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, (0, 0, 0, 1, 1, 1)) |
| verify_conv3d_ncdhw(1, 32, 32, 1, 1, 1, (2, 1, 2, 1, 2, 1)) |
| verify_conv3d_ncdhw(1, 64, 56, 3, 3, 1, (2, 2, 2, 1, 1, 1), dilation=2) |
| verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, (0, 1, 1)) |
| verify_conv3d_ncdhw(1, 32, 32, 1, 1, 1, (2, 1, 0)) |
| verify_conv3d_ncdhw(1, 32, 32, 1, 3, 1, "VALID") |
| verify_conv3d_ncdhw(1, 32, 32, 5, 1, 1, "VALID") |
| |
| # DHW kernel layout |
| verify_conv3d_ncdhw(1, 32, 56, 16, (3, 5, 7), 2, (1, 2, 3)) |
| verify_conv3d_ncdhw(1, 3, 56, 16, (3, 7, 7), 2, (1, 2, 3, 0, 3, 2)) |
| verify_conv3d_ncdhw(1, 3, 56, 16, (3, 3, 7), 2, (1, 2, 3)) |
| verify_conv3d_ncdhw(1, 3, 56, 16, (3, 7, 3), 2, (1, 3, 1)) |
| |
| # grouped workloads |
| verify_conv3d_ncdhw(1, 32, 32, 8, 1, 1, 0, groups=4) |
| verify_conv3d_ncdhw(1, 32, 32, 4, 1, 1, 0, groups=4) |
| verify_conv3d_ncdhw(1, 32, 32, 8, 1, 1, 1, groups=4) |
| verify_conv3d_ncdhw(1, 32, 32, 4, 1, 1, 1, groups=4) |
| |
| |
| if __name__ == "__main__": |
| test_conv3d_ncdhw() |