| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import platform |
| import pytest |
| import os |
| import numpy as np |
| |
| from os import path |
| |
| from tvm.driver import tvmc |
| from tvm.driver.tvmc.model import TVMCModel, TVMCPackage, TVMCResult |
| from tvm.runtime.module import BenchmarkResult |
| |
| |
| @pytest.mark.skipif( |
| platform.machine() == "aarch64", |
| reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", |
| ) |
| @pytest.mark.parametrize("use_vm", [True, False]) |
| def test_tvmc_workflow(use_vm, keras_simple): |
| pytest.importorskip("tensorflow") |
| import tensorflow as tf |
| |
| # Reset so the input name remains consistent across unit test runs |
| tf.keras.backend.clear_session() |
| |
| tvmc_model = tvmc.load(keras_simple) |
| tuning_records = tvmc.tune(tvmc_model, target="llvm", enable_autoscheduler=True, trials=2) |
| tvmc_package = tvmc.compile( |
| tvmc_model, tuning_records=tuning_records, target="llvm", use_vm=use_vm |
| ) |
| input_dict = {"input_1": np.random.uniform(size=(1, 32, 32, 3)).astype("float32")} |
| |
| result = tvmc.run( |
| tvmc_package, device="cpu", end_to_end=True, benchmark=True, inputs=input_dict |
| ) |
| assert type(tvmc_model) is TVMCModel |
| assert type(tvmc_package) is TVMCPackage |
| assert type(result) is TVMCResult |
| assert path.exists(tuning_records) |
| assert type(result.outputs) is dict |
| assert type(result.times) is BenchmarkResult |
| assert "output_0" in result.outputs.keys() |
| |
| |
| @pytest.mark.skipif( |
| platform.machine() == "aarch64", |
| reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", |
| ) |
| @pytest.mark.parametrize("use_vm", [True, False]) |
| def test_save_load_model(use_vm, keras_simple, tmpdir_factory): |
| pytest.importorskip("onnx") |
| |
| tmpdir = tmpdir_factory.mktemp("data") |
| tvmc_model = tvmc.load(keras_simple) |
| |
| # Create tuning artifacts |
| tvmc.tune(tvmc_model, target="llvm", trials=2) |
| |
| # Create package artifacts |
| tvmc.compile(tvmc_model, target="llvm", use_vm=use_vm) |
| |
| # Save the model to disk |
| model_path = os.path.join(tmpdir, "saved_model.tar") |
| tvmc_model.save(model_path) |
| |
| # Load the model into a new TVMCModel |
| new_tvmc_model = TVMCModel(model_path=model_path) |
| |
| # Check that the two models match. |
| assert str(new_tvmc_model.mod) == str(tvmc_model.mod) |
| # Check that tuning records and the compiled package are recoverable. |
| assert path.exists(new_tvmc_model.default_package_path()) |
| assert path.exists(new_tvmc_model.default_tuning_records_path()) |