| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import tvm |
| import tvm.testing |
| from tvm import te |
| import numpy as np |
| |
| |
| def lower_intrin(params, stmt): |
| """wrapper to call transformation in stmt""" |
| lower_expr = isinstance(stmt, tvm.tir.PrimExpr) |
| stmt = tvm.tir.Evaluate(stmt) if lower_expr else stmt |
| mod = tvm.IRModule.from_expr( |
| tvm.tir.PrimFunc(params, stmt).with_attr("target", tvm.target.Target("llvm")) |
| ) |
| mod = tvm.transform.Sequential([tvm.tir.transform.Simplify(), tvm.tir.transform.LowerIntrin()])( |
| mod |
| ) |
| func = mod["main"] |
| stmt = func.body |
| return stmt.value if lower_expr else stmt.body |
| |
| |
| def check_value(expr, vx, vy, data, fref): |
| n = len(data) |
| A = te.placeholder((n,), name="A", dtype=expr.dtype) |
| B = te.placeholder((n,), name="B", dtype=expr.dtype) |
| |
| def make_binds(i): |
| x = expr |
| x = tvm.tir.Let(vx, A[i], x) |
| x = tvm.tir.Let(vy, B[i], x) |
| return x |
| |
| C = te.compute((n,), make_binds) |
| f = tvm.compile(te.create_prim_func([A, B, C]), "llvm") |
| a = tvm.runtime.tensor(np.array([x for x, y in data], dtype=expr.dtype)) |
| b = tvm.runtime.tensor(np.array([y for x, y in data], dtype=expr.dtype)) |
| c = tvm.runtime.tensor(np.zeros(len(data), dtype=expr.dtype)) |
| f(a, b, c) |
| cref = np.array([fref(x, y) for x, y in data]) |
| np.testing.assert_equal(c.numpy(), cref) |
| |
| |
| def get_ref_data(): |
| """Get reference data for every pairs""" |
| import itertools |
| |
| x = range(-10, 10) |
| y = list(range(-10, 10)) |
| y.remove(0) |
| return list(itertools.product(x, y)) |
| |
| |
| @tvm.testing.requires_llvm |
| def test_lower_floordiv(): |
| data = get_ref_data() |
| for dtype in ["int32", "int64", "int16"]: |
| x = te.var("x", dtype=dtype) |
| y = te.var("y", dtype=dtype) |
| zero = tvm.tir.const(0, dtype) |
| # no constraints |
| res = lower_intrin([x, y], tvm.te.floordiv(x, y)) |
| check_value(res, x, y, data, lambda a, b: a // b) |
| # rhs >= 0 |
| res = lower_intrin([x, y], tvm.tir.Select(y >= 0, tvm.te.floordiv(x, y), zero)) |
| check_value(res, x, y, data, lambda a, b: a // b if b > 0 else 0) |
| # involves max |
| res = lower_intrin( |
| [x, y], tvm.tir.Select(y >= 0, tvm.te.max(tvm.te.floordiv(x, y), zero), zero) |
| ) |
| check_value(res, x, y, data, lambda a, b: max(a // b, 0) if b > 0 else 0) |
| # lhs >= 0 |
| res = lower_intrin( |
| [x, y], tvm.tir.Select(tvm.tir.all(y >= 0, x >= 0), tvm.te.floordiv(x, y), zero) |
| ) |
| check_value(res, x, y, data, lambda a, b: a // b if b > 0 and a >= 0 else 0) |
| # const power of two |
| res = lower_intrin([x, y], tvm.te.floordiv(x, tvm.tir.const(8, dtype=dtype))) |
| check_value(res, x, y, [(a, b) for a, b in data if b == 8], lambda a, b: a // b) |
| |
| |
| @tvm.testing.requires_llvm |
| def test_lower_floormod(): |
| data = get_ref_data() |
| for dtype in ["int32", "int64", "int16"]: |
| x = te.var("x", dtype=dtype) |
| y = te.var("y", dtype=dtype) |
| zero = tvm.tir.const(0, dtype) |
| # no constraints |
| res = lower_intrin([x, y], tvm.te.floormod(x, y)) |
| check_value(res, x, y, data, lambda a, b: a % b) |
| # rhs >= 0 |
| res = lower_intrin([x, y], tvm.tir.Select(y >= 0, tvm.te.floormod(x, y), zero)) |
| check_value(res, x, y, data, lambda a, b: a % b if b > 0 else 0) |
| # lhs >= 0 |
| res = lower_intrin( |
| [x, y], tvm.tir.Select(tvm.tir.all(y >= 0, x >= 0), tvm.te.floormod(x, y), zero) |
| ) |
| check_value(res, x, y, data, lambda a, b: a % b if b > 0 and a >= 0 else 0) |
| # const power of two |
| res = lower_intrin([x, y], tvm.te.floormod(x, tvm.tir.const(8, dtype=dtype))) |
| check_value(res, x, y, [(a, b) for a, b in data if b == 8], lambda a, b: a % b) |
| |
| |
| if __name__ == "__main__": |
| test_lower_floordiv() |
| test_lower_floormod() |