blob: dffcb04da86364e338d82f5c443b51ba4e835f41 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
import tvm.testing
from tvm.script import tir as T
from tvm.tir.stmt_functor import substitute
class BaseCompare(tvm.testing.CompareBeforeAfter):
def transform(self):
def inner(mod):
func = mod["main"]
vmap = {func.params[0]: 16}
new_func = tvm.tir.PrimFunc(params=[], body=substitute(func.body, vmap))
return tvm.IRModule.from_expr(new_func)
return inner
class TestBasicSubstitute(BaseCompare):
def before(n: T.int32):
for i in range(n):
T.evaluate(i)
def expected():
for i in range(16):
T.evaluate(i)
class TestSubstituteAllocate(BaseCompare):
def before(n: T.int32):
A_data = T.allocate([n], "float32")
T.evaluate(A_data)
def expected():
A_data = T.allocate([16], "float32")
T.evaluate(A_data)
class TestSubstituteBufferLoad(BaseCompare):
def before(n: T.int32):
A_data = T.allocate([n], "float32")
A = T.Buffer(n, "float32", data=A_data)
for i in range(n):
T.evaluate(A[i])
def expected():
A_data = T.allocate([16], "float32")
A = T.Buffer(16, "float32", data=A_data)
for i in range(16):
T.evaluate(A[i])
class TestSubstituteDeclBuffer(BaseCompare):
def before(n: T.int32):
A_data = T.allocate([n], "float32")
A = T.decl_buffer(n, "float32", data=A_data)
T.evaluate(A.data)
def expected():
A_data = T.allocate([16], "float32")
A = T.decl_buffer(16, "float32", data=A_data)
T.evaluate(A.data)
if __name__ == "__main__":
tvm.testing.main()