blob: 8d4ed399b2e87fa699e1a9a124e2727e84c0211b [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
from tvm.script import tir as T
import numpy as np
import tvm.testing
@T.prim_func
def ptx_ldmatrix(
A: T.Buffer((16, 16), "float16"), B: T.Buffer((16, 16), "float16"), num: T.int32, trans: T.uint8
) -> None:
T.func_attr({"global_symbol": "default_function", "tir.noalias": True})
bx = T.env_thread("blockIdx.x")
tx = T.env_thread("threadIdx.x")
T.launch_thread(bx, 1)
T.launch_thread(tx, 32)
with T.block():
A_shared = T.alloc_buffer([16, 16], "float16", scope="shared")
A_local = T.alloc_buffer([8], "float16", scope="local")
for i in range(8):
A_shared[i * 2 + tx // 16, tx % 16] = A[i * 2 + tx // 16, tx % 16]
T.evaluate(
T.ptx_ldmatrix(
trans,
num,
".b16",
A_local.data,
0,
A_shared.data,
16 * (tx % 16) + 8 * (tx // 16),
dtype="float16",
)
)
for k in range(2):
for j in range(2):
for i in range(2):
B[8 * j + tx // 4, 8 * k + (tx % 4) * 2 + i] = A_local[4 * k + 2 * j + i]
@tvm.testing.requires_cuda_compute_version(7, 5)
def test_ptx_ldmatrix():
f = ptx_ldmatrix
_, _, param_num, param_trans = f.params
for num in [1, 2, 4]:
for trans in [False, True]:
mod = tvm.compile(f.specialize({param_num: num, param_trans: trans}), target="cuda")
A_np = np.random.rand(16, 16).astype("float16")
A_mask_np = np.zeros_like(A_np)
if num == 1:
if trans:
A_mask_np[:8, :8] = A_np[:8, :8].T
else:
A_mask_np[:8, :8] = A_np[:8, :8]
elif num == 2:
if trans:
A_mask_np[:8, :8] = A_np[:8, :8].T
A_mask_np[8:16, :8] = A_np[8:16, :8].T
else:
A_mask_np[:16, :8] = A_np[:16, :8]
else: # num == 4
if trans:
A_mask_np[:8, :8] = A_np[:8, :8].T
A_mask_np[8:16, :8] = A_np[8:16, :8].T
A_mask_np[:8, 8:16] = A_np[:8, 8:16].T
A_mask_np[8:16, 8:16] = A_np[8:16, 8:16].T
else:
A_mask_np[:16, :16] = A_np[:16, :16]
B_np = np.zeros((16, 16)).astype("float16")
dev = tvm.cuda(0)
A_nd = tvm.runtime.tensor(A_np, device=dev)
B_nd = tvm.runtime.tensor(B_np, device=dev)
mod(A_nd, B_nd)
tvm.testing.assert_allclose(B_nd.numpy(), A_mask_np)
if __name__ == "__main__":
test_ptx_ldmatrix()