| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import tvm |
| import tvm.testing |
| from tvm.relax.transform import ConvertLayout, Normalize |
| from tvm.script.parser import ir as I, relax as R, tir as T |
| from tvm.relax.transform.legalize_ops import adreno as legalize_adreno |
| from adreno_utils import verify |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 64, 56, 56), "float32"), w: R.Tensor((32, 64, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 32, 54, 54), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| R.output(gv) |
| return gv |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_relu(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 26, 26), "float32") = R.nn.relu(gv) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_relu_conv2d_relu(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| x0: R.Tensor((2, 16, 28, 28), "float32") = R.nn.relu(x) |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x0, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 26, 26), "float32") = R.nn.relu(gv) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_relu_tanh(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 26, 26), "float32") = R.nn.relu(gv) |
| gv3: R.Tensor((2, 4, 26, 26), "float32") = R.tanh(gv2) |
| R.output(gv3) |
| return gv3 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_add(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), |
| w: R.Tensor((4, 16, 3, 3), "float32"), |
| bias: R.Tensor((2, 4, 26, 26), "float32"), |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 26, 26), "float32") = R.add(gv, bias) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_sum(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=2): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4), "float32") = R.sum(gv, axis=[2, 3]) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_sum_keepdims(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=2): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 1, 1), "float32") = R.sum(gv, axis=[2, 3], keepdims=True) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_sum_reduce(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=2): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 26), "float32") = R.sum(gv, axis=[1, 2]) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_transpose(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((26, 26, 4, 2), "float32") = R.permute_dims(gv, axes=[3, 2, 1, 0]) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_expand_dims(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=6): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 1, 4, 1, 26, 26), "float32") = R.expand_dims(gv, axis=(-3, 1)) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_squeeze(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((1, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=3): |
| with R.dataflow(): |
| gv: R.Tensor((1, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((4, 26, 26), "float32") = R.squeeze(gv, axis=[0]) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_strided_slice(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 2, 9, 7), dtype="float32") = R.strided_slice( |
| gv, begin=[0, 0, 0], end=[4, 26, 26], strides=[2, 3, 4], axes=[1, 2, 3] |
| ) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_relu_concat(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 26, 26), "float32") = R.nn.relu(gv) |
| gv3: R.Tensor((2, 8, 26, 26), "float32") = R.concat((gv, gv2), axis=1) |
| R.output(gv3) |
| return gv3 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_relu_concat_split(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main(x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32")): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 26, 26), "float32") = R.nn.relu(gv) |
| gv3: R.Tensor((2, 8, 26, 26), "float32") = R.concat((gv, gv2), axis=1) |
| gv4 = R.split(gv3, indices_or_sections=2, axis=1) |
| # TODO @Siva: Multi value return have an issue at runtime. |
| gv5 = gv4[0] |
| R.output(gv5) |
| return gv5 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_relu_concat_split_transpose_concat(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main(x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32")): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 26, 26), "float32") = R.nn.relu(gv) |
| gv3: R.Tensor((2, 8, 26, 26), "float32") = R.concat((gv, gv2), axis=1) |
| gv4 = R.split(gv3, indices_or_sections=2, axis=1) |
| gv5: R.Tensor((26, 26, 4, 2), "float32") = R.permute_dims(gv4[0], axes=[3, 2, 1, 0]) |
| gv6: R.Tensor((26, 26, 4, 2), "float32") = R.permute_dims(gv4[1], axes=[3, 2, 1, 0]) |
| gv7: R.Tensor((26, 26, 8, 2), "float32") = R.concat((gv5, gv6), axis=2) |
| R.output(gv7) |
| return gv7 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_maxpool2d(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2 = R.nn.max_pool2d( |
| gv, |
| pool_size=[2, 2], |
| strides=[2, 2], |
| padding=[0, 0], |
| layout="NCHW", |
| out_layout="NCHW", |
| ) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_avgpool2d(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2 = R.nn.adaptive_avg_pool2d(gv, output_size=[13, 13], layout="NCHW") |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_softmax(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2 = R.nn.softmax(gv, axis=1) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_layernorm(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), |
| w: R.Tensor((4, 16, 3, 3), "float32"), |
| gamma: R.Tensor((26, 26), dtype="float32"), |
| beta: R.Tensor((26, 26), dtype="float32"), |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 26, 26), dtype="float32") = R.nn.layer_norm( |
| gv, gamma, beta, axes=[-2, -1] |
| ) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_binary_broadcast(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), |
| w: R.Tensor((4, 16, 3, 3), "float32"), |
| bias: R.Tensor((26, 26), "float32"), |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 26, 26), "float32") = R.add(gv, bias) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_binary_ewise_scalar(target): |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 16, 28, 28), "float32"), w: R.Tensor((4, 16, 3, 3), "float32") |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv: R.Tensor((2, 4, 26, 26), "float32") = R.nn.conv2d(x, w, out_dtype="float32") |
| gv2: R.Tensor((2, 4, 26, 26), "float32") = R.add(gv, R.const(1, "float32")) |
| R.output(gv2) |
| return gv2 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_residual_block(target): |
| """ |
| - some kind of residual block followed by convolution to have texture after residual block |
| - scalar data type verification which should be mapped to global memory scope |
| layout_transform (NCHW->NCHW4c) |
| | <- buffer |
| conv2d (1) <- to get textures as output |
| / \ |
| conv2d (2) | |
| \ / |
| add <- add should be fused into conv2d (2) |
| multiply to scalar <- buffer to the input of multiply scalar value |
| relu |
| | <- texture in intermediate tensor |
| conv2d (3) |
| relu |
| | <- buffer |
| layout_transform (NCHW4c->NCHW) |
| """ |
| |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 32, 40, 40), "float32"), |
| w1: R.Tensor((32, 32, 2, 2), "float32"), |
| w2: R.Tensor((32, 32, 1, 1), "float32"), |
| w3: R.Tensor((32, 32, 2, 2), "float32"), |
| bias: R.Tensor((1, 32, 1, 1), "float32"), |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv = R.nn.conv2d(x, w1, strides=[2, 2], out_dtype="float32") |
| gv1 = R.add(gv, bias) |
| gv2 = R.nn.relu(gv1) |
| gv3 = R.nn.conv2d(gv2, w2, strides=[1, 1], out_dtype="float32") |
| bias_1 = R.multiply(bias, R.const(0.15, "float32")) |
| gv4 = R.add(gv3, bias_1) |
| gv5 = R.nn.relu(gv4) |
| gv6 = R.nn.conv2d(gv5, w3, strides=[2, 2], out_dtype="float32") |
| gv7 = R.nn.relu(gv6) |
| R.output(gv7) |
| return gv7 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_conv2d_fallback_to_buffer_conv2d(target): |
| """ |
| layout_transform (NCHW->NCHW4c) |
| | <- texture |
| conv2d (1) <- textures as output |
| / \ |
| conv2d (2) conv2d (3) <- conv2d (2) emits texture, conv2d (3) emits buffer |
| \ / <- concat shouldn't support textures here |
| concatenation |
| | <- buffer |
| layout_transform (NCHW4c->NCHW) |
| """ |
| |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 32, 40, 40), "float32"), |
| w1: R.Tensor((96, 32, 2, 2), "float32"), |
| w2: R.Tensor((32, 96, 2, 2), "float32"), |
| w3: R.Tensor((5, 96, 2, 2), "float32"), |
| bias1: R.Tensor((1, 96, 1, 1), "float32"), |
| bias2: R.Tensor((1, 32, 1, 1), "float32"), |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv = R.nn.conv2d(x, w1, strides=[2, 2], out_dtype="float32") |
| gv1 = R.add(gv, bias1) |
| gv2 = R.nn.relu(gv1) |
| gv3 = R.nn.conv2d(gv2, w2, strides=[2, 2], out_dtype="float32") |
| gv4 = R.add(gv3, bias2) |
| gv5 = R.nn.relu(gv4) |
| gv6 = R.nn.conv2d(gv2, w3, strides=[2, 2], out_dtype="float32") |
| gv7 = R.concat((gv3, gv6), axis=1) |
| R.output(gv7) |
| return gv7 |
| |
| verify(Input, "opencl") |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_conv2d_conv2d_conv2d_concat(target): |
| """ |
| layout_transform (NCHW->NCHW4c) |
| | <- texture |
| conv2d (1) <- textures as output |
| / \ |
| conv2d (2) conv2d (3) |
| \ / <- concat does support textures here |
| concatenation |
| | <- buffer |
| layout_transform (NCHW4c->NCHW) |
| """ |
| |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 32, 40, 40), "float32"), |
| w1: R.Tensor((96, 32, 2, 2), "float32"), |
| w2: R.Tensor((32, 96, 2, 2), "float32"), |
| w3: R.Tensor((8, 96, 2, 2), "float32"), |
| bias1: R.Tensor((1, 96, 1, 1), "float32"), |
| bias2: R.Tensor((1, 32, 1, 1), "float32"), |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv = R.nn.conv2d(x, w1, strides=[2, 2], out_dtype="float32") |
| gv1 = R.add(gv, bias1) |
| gv2 = R.nn.relu(gv1) |
| gv3 = R.nn.conv2d(gv2, w2, strides=[2, 2], out_dtype="float32") |
| gv4 = R.add(gv3, bias2) |
| gv5 = R.nn.relu(gv4) |
| gv6 = R.nn.conv2d(gv2, w3, strides=[2, 2], out_dtype="float32") |
| gv7 = R.concat((gv3, gv6), axis=1) |
| R.output(gv7) |
| return gv7 |
| |
| verify(Input, "opencl") |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_pooling_branching_texture_params(target): |
| """ |
| Verification of the pooling and many branches having textures |
| layout_transform (NCHW->NCHW4c) |
| | <- texture |
| conv2d (0) <- to get textures |
| | <- textures |
| pooling |
| / \ \ <- textures |
| conv2d (1) conv2d (2) conv2d (3) |
| \ / | |
| add | <- to have the only one output, will be fused |
| \ / |
| add <- to have the only one output, will be fused |
| | <- buffer |
| layout_transform (NCHW4c->NCHW) |
| """ |
| |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((2, 32, 40, 40), "float32"), |
| w1: R.Tensor((32, 32, 1, 1), "float32"), |
| w2: R.Tensor((32, 32, 2, 2), "float32"), |
| w3: R.Tensor((32, 32, 1, 1), "float32"), |
| w4: R.Tensor((32, 32, 2, 2), "float32"), |
| bias1: R.Tensor((1, 32, 1, 1), "float32"), |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| gv = R.nn.conv2d(x, w1, strides=[1, 1], out_dtype="float32") |
| gv1 = R.nn.max_pool2d(gv, pool_size=[2, 2], strides=[2, 2]) |
| gv2 = R.nn.conv2d( |
| gv1, w2, padding=[0, 0, 1, 1], strides=[1, 1], out_dtype="float32" |
| ) |
| gv3 = R.add(gv2, bias1) |
| gv4 = R.nn.relu(gv3) |
| gv5 = R.nn.conv2d( |
| gv1, w3, padding=[0, 0, 0, 0], strides=[1, 1], out_dtype="float32" |
| ) |
| gv6 = R.nn.conv2d( |
| gv1, w4, padding=[0, 1, 1, 0], strides=[1, 1], out_dtype="float32" |
| ) |
| gv7 = R.nn.relu(gv6) |
| gv8 = R.add(gv2, gv5) |
| gv9 = R.add(gv8, gv6) |
| R.output(gv9) |
| return gv9 |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_injective_inputs1(target): |
| """ |
| Input |
| / \ |
| / | |
| | / |
| conv2d (1) / |
| | / |
| conv2d (2) mean |
| / \ / |
| | | \ / |
| | | (3) add |
| | | | |
| | \ / |
| \ mul |
| \ / |
| add |
| |
| """ |
| |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((1, 4, 40, 40), "float32"), |
| w1: R.Tensor((4, 4, 3, 3), "float32"), |
| w2: R.Tensor((4, 4, 3, 3), "float32"), |
| w3: R.Tensor((4, 4, 3, 3), "float32"), |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| mean = R.mean(x, axis=1, keepdims=True) |
| conv1 = R.nn.conv2d( |
| x, w1, padding=[1, 1, 1, 1], strides=[1, 1], out_dtype="float32" |
| ) |
| conv2 = R.nn.conv2d( |
| conv1, w2, padding=[1, 1, 1, 1], strides=[1, 1], out_dtype="float32" |
| ) |
| ad3 = R.add(conv1, conv2) |
| ad1 = R.add(mean, conv1) |
| ad2 = R.multiply(ad1, conv2) |
| gv = R.add(ad3, ad2) |
| R.output(gv) |
| return gv |
| |
| verify(Input, target) |
| |
| |
| @tvm.testing.requires_opencl |
| @tvm.testing.parametrize_targets("opencl") |
| def test_injective_nwo_inputs2(target): |
| """ |
| Input |
| / \ |
| | \ |
| conv2d \ |
| | / |
| conv2d mean / |
| / \ / |
| add | \ | |
| | | \ | |
| | | \ / |
| | | (3) add |
| | | | |
| | \ / |
| | \ / |
| \ mul |
| \ / |
| add |
| |
| """ |
| |
| @I.ir_module |
| class Input: |
| @R.function |
| def main( |
| x: R.Tensor((1, 4, 40, 40), "float32"), |
| w1: R.Tensor((4, 4, 3, 3), "float32"), |
| w2: R.Tensor((4, 4, 3, 3), "float32"), |
| w3: R.Tensor((4, 4, 3, 3), "float32"), |
| ) -> R.Tensor(None, "float32", ndim=4): |
| with R.dataflow(): |
| mean = R.mean(x, axis=1, keepdims=True) |
| conv1 = R.nn.conv2d( |
| x, w1, padding=[1, 1, 1, 1], strides=[1, 1], out_dtype="float32" |
| ) |
| conv2 = R.nn.conv2d( |
| conv1, w2, padding=[1, 1, 1, 1], strides=[1, 1], out_dtype="float32" |
| ) |
| ad3 = R.add(conv1, conv2) |
| ad1 = R.add(mean, conv1) |
| ad2 = R.multiply(ad1, conv2) |
| gv = R.add(ad2, ad3) |
| R.output(gv) |
| return gv |
| |
| verify(Input, target) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |