blob: aeb4f1248c105cfeacc7f9bfc3ea6fa57ef0ddf4 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
import numpy as np
import tvm
import tvm.testing
import onnx
import copy
from tvm import relax
from tvm.script import relax as R
from tvm.script import ir as I
from tvm.script import tir as T
from adreno_utils import verify
from tvm.script.ir_builder import IRBuilder
from tvm.script.ir_builder import relax as relax_builder
from tvm.relax.frontend.onnx import from_onnx
from tvm.relax.transform.legalize_ops import adreno as legalize_adreno
import pytest
import json
import copy
@tvm.testing.requires_opencl
@tvm.testing.parametrize_targets("opencl")
def test_network_resnet(target):
@I.ir_module
class Resnet:
@R.function
def main(
data: R.Tensor((1, 3, 224, 224), dtype="float32"),
resnetv22_batchnorm0_gamma: R.Tensor((3,), dtype="float32"),
resnetv22_batchnorm0_beta: R.Tensor((3,), dtype="float32"),
resnetv22_batchnorm0_running_mea: R.Tensor((3,), dtype="float32"),
resnetv22_batchnorm0_running_var: R.Tensor((3,), dtype="float32"),
resnetv22_conv0_weight: R.Tensor((64, 3, 7, 7), dtype="float32"),
resnetv22_batchnorm1_gamma: R.Tensor((64,), dtype="float32"),
resnetv22_batchnorm1_beta: R.Tensor((64,), dtype="float32"),
resnetv22_batchnorm1_running_mea: R.Tensor((64,), dtype="float32"),
resnetv22_batchnorm1_running_var: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm0_gamma: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm0_beta: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm0_running_mea: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm0_running_var: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_conv0_weight: R.Tensor((64, 64, 3, 3), dtype="float32"),
resnetv22_stage1_batchnorm1_gamma: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm1_beta: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm1_running_mea: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm1_running_var: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_conv1_weight: R.Tensor((64, 64, 3, 3), dtype="float32"),
resnetv22_stage1_batchnorm2_gamma: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm2_beta: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm2_running_mea: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm2_running_var: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_conv2_weight: R.Tensor((64, 64, 3, 3), dtype="float32"),
resnetv22_stage1_batchnorm3_gamma: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm3_beta: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm3_running_mea: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_batchnorm3_running_var: R.Tensor((64,), dtype="float32"),
resnetv22_stage1_conv3_weight: R.Tensor((64, 64, 3, 3), dtype="float32"),
resnetv22_stage2_batchnorm0_gamma: R.Tensor((64,), dtype="float32"),
resnetv22_stage2_batchnorm0_beta: R.Tensor((64,), dtype="float32"),
resnetv22_stage2_batchnorm0_running_mea: R.Tensor((64,), dtype="float32"),
resnetv22_stage2_batchnorm0_running_var: R.Tensor((64,), dtype="float32"),
resnetv22_stage2_conv0_weight: R.Tensor((128, 64, 3, 3), dtype="float32"),
resnetv22_stage2_batchnorm1_gamma: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_batchnorm1_beta: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_batchnorm1_running_mea: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_batchnorm1_running_var: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_conv1_weight: R.Tensor((128, 128, 3, 3), dtype="float32"),
resnetv22_stage2_conv2_weight: R.Tensor((128, 64, 1, 1), dtype="float32"),
resnetv22_stage2_batchnorm2_gamma: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_batchnorm2_beta: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_batchnorm2_running_mea: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_batchnorm2_running_var: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_conv3_weight: R.Tensor((128, 128, 3, 3), dtype="float32"),
resnetv22_stage2_batchnorm3_gamma: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_batchnorm3_beta: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_batchnorm3_running_mea: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_batchnorm3_running_var: R.Tensor((128,), dtype="float32"),
resnetv22_stage2_conv4_weight: R.Tensor((128, 128, 3, 3), dtype="float32"),
resnetv22_stage3_batchnorm0_gamma: R.Tensor((128,), dtype="float32"),
resnetv22_stage3_batchnorm0_beta: R.Tensor((128,), dtype="float32"),
resnetv22_stage3_batchnorm0_running_mea: R.Tensor((128,), dtype="float32"),
resnetv22_stage3_batchnorm0_running_var: R.Tensor((128,), dtype="float32"),
resnetv22_stage3_conv0_weight: R.Tensor((256, 128, 3, 3), dtype="float32"),
resnetv22_stage3_batchnorm1_gamma: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_batchnorm1_beta: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_batchnorm1_running_mea: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_batchnorm1_running_var: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_conv1_weight: R.Tensor((256, 256, 3, 3), dtype="float32"),
resnetv22_stage3_conv2_weight: R.Tensor((256, 128, 1, 1), dtype="float32"),
resnetv22_stage3_batchnorm2_gamma: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_batchnorm2_beta: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_batchnorm2_running_mea: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_batchnorm2_running_var: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_conv3_weight: R.Tensor((256, 256, 3, 3), dtype="float32"),
resnetv22_stage3_batchnorm3_gamma: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_batchnorm3_beta: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_batchnorm3_running_mea: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_batchnorm3_running_var: R.Tensor((256,), dtype="float32"),
resnetv22_stage3_conv4_weight: R.Tensor((256, 256, 3, 3), dtype="float32"),
resnetv22_stage4_batchnorm0_gamma: R.Tensor((256,), dtype="float32"),
resnetv22_stage4_batchnorm0_beta: R.Tensor((256,), dtype="float32"),
resnetv22_stage4_batchnorm0_running_mea: R.Tensor((256,), dtype="float32"),
resnetv22_stage4_batchnorm0_running_var: R.Tensor((256,), dtype="float32"),
resnetv22_stage4_conv0_weight: R.Tensor((512, 256, 3, 3), dtype="float32"),
resnetv22_stage4_batchnorm1_gamma: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_batchnorm1_beta: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_batchnorm1_running_mea: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_batchnorm1_running_var: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_conv1_weight: R.Tensor((512, 512, 3, 3), dtype="float32"),
resnetv22_stage4_conv2_weight: R.Tensor((512, 256, 1, 1), dtype="float32"),
resnetv22_stage4_batchnorm2_gamma: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_batchnorm2_beta: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_batchnorm2_running_mea: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_batchnorm2_running_var: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_conv3_weight: R.Tensor((512, 512, 3, 3), dtype="float32"),
resnetv22_stage4_batchnorm3_gamma: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_batchnorm3_beta: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_batchnorm3_running_mea: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_batchnorm3_running_var: R.Tensor((512,), dtype="float32"),
resnetv22_stage4_conv4_weight: R.Tensor((512, 512, 3, 3), dtype="float32"),
resnetv22_batchnorm2_gamma: R.Tensor((512,), dtype="float32"),
resnetv22_batchnorm2_beta: R.Tensor((512,), dtype="float32"),
resnetv22_batchnorm2_running_mea: R.Tensor((512,), dtype="float32"),
resnetv22_batchnorm2_running_var: R.Tensor((512,), dtype="float32"),
reshape_attr_tensor164: R.Tensor((2,), dtype="int64"),
resnetv22_dense0_weight: R.Tensor((1000, 512), dtype="float32"),
resnetv22_dense0_bias: R.Tensor((1000,), dtype="float32"),
) -> R.Tensor((1, 1000), dtype="float32"):
with R.dataflow():
lv: R.Tuple(
R.Tensor((1, 3, 224, 224), dtype="float32"),
R.Tensor((3,), dtype="float32"),
R.Tensor((3,), dtype="float32"),
) = R.nn.batch_norm(
data,
resnetv22_batchnorm0_gamma,
resnetv22_batchnorm0_beta,
resnetv22_batchnorm0_running_mea,
resnetv22_batchnorm0_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv1: R.Tensor((1, 3, 224, 224), dtype="float32") = lv[0]
lv2: R.Tensor((3,), dtype="float32") = lv[1]
lv3: R.Tensor((3,), dtype="float32") = lv[2]
lv4: R.Tensor((1, 64, 112, 112), dtype="float32") = R.nn.conv2d(
lv1,
resnetv22_conv0_weight,
strides=[2, 2],
padding=[3, 3, 3, 3],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv5: R.Tuple(
R.Tensor((1, 64, 112, 112), dtype="float32"),
R.Tensor((64,), dtype="float32"),
R.Tensor((64,), dtype="float32"),
) = R.nn.batch_norm(
lv4,
resnetv22_batchnorm1_gamma,
resnetv22_batchnorm1_beta,
resnetv22_batchnorm1_running_mea,
resnetv22_batchnorm1_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv6: R.Tensor((1, 64, 112, 112), dtype="float32") = lv5[0]
lv7: R.Tensor((64,), dtype="float32") = lv5[1]
lv8: R.Tensor((64,), dtype="float32") = lv5[2]
lv9: R.Tensor((1, 64, 112, 112), dtype="float32") = R.nn.relu(lv6)
lv10: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.max_pool2d(
lv9,
pool_size=[3, 3],
strides=[2, 2],
dilation=[1, 1],
padding=[1, 1, 1, 1],
ceil_mode=False,
count_include_pad=False,
layout="NCHW",
out_layout="NCHW",
)
lv11: R.Tuple(
R.Tensor((1, 64, 56, 56), dtype="float32"),
R.Tensor((64,), dtype="float32"),
R.Tensor((64,), dtype="float32"),
) = R.nn.batch_norm(
lv10,
resnetv22_stage1_batchnorm0_gamma,
resnetv22_stage1_batchnorm0_beta,
resnetv22_stage1_batchnorm0_running_mea,
resnetv22_stage1_batchnorm0_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv12: R.Tensor((1, 64, 56, 56), dtype="float32") = lv11[0]
lv13: R.Tensor((64,), dtype="float32") = lv11[1]
lv14: R.Tensor((64,), dtype="float32") = lv11[2]
lv15: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.relu(lv12)
lv16: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.conv2d(
lv15,
resnetv22_stage1_conv0_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv17: R.Tuple(
R.Tensor((1, 64, 56, 56), dtype="float32"),
R.Tensor((64,), dtype="float32"),
R.Tensor((64,), dtype="float32"),
) = R.nn.batch_norm(
lv16,
resnetv22_stage1_batchnorm1_gamma,
resnetv22_stage1_batchnorm1_beta,
resnetv22_stage1_batchnorm1_running_mea,
resnetv22_stage1_batchnorm1_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv18: R.Tensor((1, 64, 56, 56), dtype="float32") = lv17[0]
lv19: R.Tensor((64,), dtype="float32") = lv17[1]
lv20: R.Tensor((64,), dtype="float32") = lv17[2]
lv21: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.relu(lv18)
lv22: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.conv2d(
lv21,
resnetv22_stage1_conv1_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv23: R.Tensor((1, 64, 56, 56), dtype="float32") = R.add(lv22, lv10)
lv24: R.Tuple(
R.Tensor((1, 64, 56, 56), dtype="float32"),
R.Tensor((64,), dtype="float32"),
R.Tensor((64,), dtype="float32"),
) = R.nn.batch_norm(
lv23,
resnetv22_stage1_batchnorm2_gamma,
resnetv22_stage1_batchnorm2_beta,
resnetv22_stage1_batchnorm2_running_mea,
resnetv22_stage1_batchnorm2_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv25: R.Tensor((1, 64, 56, 56), dtype="float32") = lv24[0]
lv26: R.Tensor((64,), dtype="float32") = lv24[1]
lv27: R.Tensor((64,), dtype="float32") = lv24[2]
lv28: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.relu(lv25)
lv29: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.conv2d(
lv28,
resnetv22_stage1_conv2_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv30: R.Tuple(
R.Tensor((1, 64, 56, 56), dtype="float32"),
R.Tensor((64,), dtype="float32"),
R.Tensor((64,), dtype="float32"),
) = R.nn.batch_norm(
lv29,
resnetv22_stage1_batchnorm3_gamma,
resnetv22_stage1_batchnorm3_beta,
resnetv22_stage1_batchnorm3_running_mea,
resnetv22_stage1_batchnorm3_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv31: R.Tensor((1, 64, 56, 56), dtype="float32") = lv30[0]
lv32: R.Tensor((64,), dtype="float32") = lv30[1]
lv33: R.Tensor((64,), dtype="float32") = lv30[2]
lv34: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.relu(lv31)
lv35: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.conv2d(
lv34,
resnetv22_stage1_conv3_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv36: R.Tensor((1, 64, 56, 56), dtype="float32") = R.add(lv35, lv23)
lv37: R.Tuple(
R.Tensor((1, 64, 56, 56), dtype="float32"),
R.Tensor((64,), dtype="float32"),
R.Tensor((64,), dtype="float32"),
) = R.nn.batch_norm(
lv36,
resnetv22_stage2_batchnorm0_gamma,
resnetv22_stage2_batchnorm0_beta,
resnetv22_stage2_batchnorm0_running_mea,
resnetv22_stage2_batchnorm0_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv38: R.Tensor((1, 64, 56, 56), dtype="float32") = lv37[0]
lv39: R.Tensor((64,), dtype="float32") = lv37[1]
lv40: R.Tensor((64,), dtype="float32") = lv37[2]
lv41: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.relu(lv38)
lv42: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.conv2d(
lv41,
resnetv22_stage2_conv0_weight,
strides=[2, 2],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv43: R.Tuple(
R.Tensor((1, 128, 28, 28), dtype="float32"),
R.Tensor((128,), dtype="float32"),
R.Tensor((128,), dtype="float32"),
) = R.nn.batch_norm(
lv42,
resnetv22_stage2_batchnorm1_gamma,
resnetv22_stage2_batchnorm1_beta,
resnetv22_stage2_batchnorm1_running_mea,
resnetv22_stage2_batchnorm1_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv44: R.Tensor((1, 128, 28, 28), dtype="float32") = lv43[0]
lv45: R.Tensor((128,), dtype="float32") = lv43[1]
lv46: R.Tensor((128,), dtype="float32") = lv43[2]
lv47: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.relu(lv44)
lv48: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.conv2d(
lv47,
resnetv22_stage2_conv1_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv49: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.conv2d(
lv41,
resnetv22_stage2_conv2_weight,
strides=[2, 2],
padding=[0, 0, 0, 0],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv50: R.Tensor((1, 128, 28, 28), dtype="float32") = R.add(lv48, lv49)
lv51: R.Tuple(
R.Tensor((1, 128, 28, 28), dtype="float32"),
R.Tensor((128,), dtype="float32"),
R.Tensor((128,), dtype="float32"),
) = R.nn.batch_norm(
lv50,
resnetv22_stage2_batchnorm2_gamma,
resnetv22_stage2_batchnorm2_beta,
resnetv22_stage2_batchnorm2_running_mea,
resnetv22_stage2_batchnorm2_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv52: R.Tensor((1, 128, 28, 28), dtype="float32") = lv51[0]
lv53: R.Tensor((128,), dtype="float32") = lv51[1]
lv54: R.Tensor((128,), dtype="float32") = lv51[2]
lv55: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.relu(lv52)
lv56: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.conv2d(
lv55,
resnetv22_stage2_conv3_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv57: R.Tuple(
R.Tensor((1, 128, 28, 28), dtype="float32"),
R.Tensor((128,), dtype="float32"),
R.Tensor((128,), dtype="float32"),
) = R.nn.batch_norm(
lv56,
resnetv22_stage2_batchnorm3_gamma,
resnetv22_stage2_batchnorm3_beta,
resnetv22_stage2_batchnorm3_running_mea,
resnetv22_stage2_batchnorm3_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv58: R.Tensor((1, 128, 28, 28), dtype="float32") = lv57[0]
lv59: R.Tensor((128,), dtype="float32") = lv57[1]
lv60: R.Tensor((128,), dtype="float32") = lv57[2]
lv61: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.relu(lv58)
lv62: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.conv2d(
lv61,
resnetv22_stage2_conv4_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv63: R.Tensor((1, 128, 28, 28), dtype="float32") = R.add(lv62, lv50)
lv64: R.Tuple(
R.Tensor((1, 128, 28, 28), dtype="float32"),
R.Tensor((128,), dtype="float32"),
R.Tensor((128,), dtype="float32"),
) = R.nn.batch_norm(
lv63,
resnetv22_stage3_batchnorm0_gamma,
resnetv22_stage3_batchnorm0_beta,
resnetv22_stage3_batchnorm0_running_mea,
resnetv22_stage3_batchnorm0_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv65: R.Tensor((1, 128, 28, 28), dtype="float32") = lv64[0]
lv66: R.Tensor((128,), dtype="float32") = lv64[1]
lv67: R.Tensor((128,), dtype="float32") = lv64[2]
lv68: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.relu(lv65)
lv69: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.conv2d(
lv68,
resnetv22_stage3_conv0_weight,
strides=[2, 2],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv70: R.Tuple(
R.Tensor((1, 256, 14, 14), dtype="float32"),
R.Tensor((256,), dtype="float32"),
R.Tensor((256,), dtype="float32"),
) = R.nn.batch_norm(
lv69,
resnetv22_stage3_batchnorm1_gamma,
resnetv22_stage3_batchnorm1_beta,
resnetv22_stage3_batchnorm1_running_mea,
resnetv22_stage3_batchnorm1_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv71: R.Tensor((1, 256, 14, 14), dtype="float32") = lv70[0]
lv72: R.Tensor((256,), dtype="float32") = lv70[1]
lv73: R.Tensor((256,), dtype="float32") = lv70[2]
lv74: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.relu(lv71)
lv75: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.conv2d(
lv74,
resnetv22_stage3_conv1_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv76: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.conv2d(
lv68,
resnetv22_stage3_conv2_weight,
strides=[2, 2],
padding=[0, 0, 0, 0],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv77: R.Tensor((1, 256, 14, 14), dtype="float32") = R.add(lv75, lv76)
lv78: R.Tuple(
R.Tensor((1, 256, 14, 14), dtype="float32"),
R.Tensor((256,), dtype="float32"),
R.Tensor((256,), dtype="float32"),
) = R.nn.batch_norm(
lv77,
resnetv22_stage3_batchnorm2_gamma,
resnetv22_stage3_batchnorm2_beta,
resnetv22_stage3_batchnorm2_running_mea,
resnetv22_stage3_batchnorm2_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv79: R.Tensor((1, 256, 14, 14), dtype="float32") = lv78[0]
lv80: R.Tensor((256,), dtype="float32") = lv78[1]
lv81: R.Tensor((256,), dtype="float32") = lv78[2]
lv82: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.relu(lv79)
lv83: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.conv2d(
lv82,
resnetv22_stage3_conv3_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv84: R.Tuple(
R.Tensor((1, 256, 14, 14), dtype="float32"),
R.Tensor((256,), dtype="float32"),
R.Tensor((256,), dtype="float32"),
) = R.nn.batch_norm(
lv83,
resnetv22_stage3_batchnorm3_gamma,
resnetv22_stage3_batchnorm3_beta,
resnetv22_stage3_batchnorm3_running_mea,
resnetv22_stage3_batchnorm3_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv85: R.Tensor((1, 256, 14, 14), dtype="float32") = lv84[0]
lv86: R.Tensor((256,), dtype="float32") = lv84[1]
lv87: R.Tensor((256,), dtype="float32") = lv84[2]
lv88: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.relu(lv85)
lv89: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.conv2d(
lv88,
resnetv22_stage3_conv4_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv90: R.Tensor((1, 256, 14, 14), dtype="float32") = R.add(lv89, lv77)
lv91: R.Tuple(
R.Tensor((1, 256, 14, 14), dtype="float32"),
R.Tensor((256,), dtype="float32"),
R.Tensor((256,), dtype="float32"),
) = R.nn.batch_norm(
lv90,
resnetv22_stage4_batchnorm0_gamma,
resnetv22_stage4_batchnorm0_beta,
resnetv22_stage4_batchnorm0_running_mea,
resnetv22_stage4_batchnorm0_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv92: R.Tensor((1, 256, 14, 14), dtype="float32") = lv91[0]
lv93: R.Tensor((256,), dtype="float32") = lv91[1]
lv94: R.Tensor((256,), dtype="float32") = lv91[2]
lv95: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.relu(lv92)
lv96: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.conv2d(
lv95,
resnetv22_stage4_conv0_weight,
strides=[2, 2],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv97: R.Tuple(
R.Tensor((1, 512, 7, 7), dtype="float32"),
R.Tensor((512,), dtype="float32"),
R.Tensor((512,), dtype="float32"),
) = R.nn.batch_norm(
lv96,
resnetv22_stage4_batchnorm1_gamma,
resnetv22_stage4_batchnorm1_beta,
resnetv22_stage4_batchnorm1_running_mea,
resnetv22_stage4_batchnorm1_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv98: R.Tensor((1, 512, 7, 7), dtype="float32") = lv97[0]
lv99: R.Tensor((512,), dtype="float32") = lv97[1]
lv100: R.Tensor((512,), dtype="float32") = lv97[2]
lv101: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.relu(lv98)
lv102: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.conv2d(
lv101,
resnetv22_stage4_conv1_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv103: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.conv2d(
lv95,
resnetv22_stage4_conv2_weight,
strides=[2, 2],
padding=[0, 0, 0, 0],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv104: R.Tensor((1, 512, 7, 7), dtype="float32") = R.add(lv102, lv103)
lv105: R.Tuple(
R.Tensor((1, 512, 7, 7), dtype="float32"),
R.Tensor((512,), dtype="float32"),
R.Tensor((512,), dtype="float32"),
) = R.nn.batch_norm(
lv104,
resnetv22_stage4_batchnorm2_gamma,
resnetv22_stage4_batchnorm2_beta,
resnetv22_stage4_batchnorm2_running_mea,
resnetv22_stage4_batchnorm2_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv106: R.Tensor((1, 512, 7, 7), dtype="float32") = lv105[0]
lv107: R.Tensor((512,), dtype="float32") = lv105[1]
lv108: R.Tensor((512,), dtype="float32") = lv105[2]
lv109: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.relu(lv106)
lv110: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.conv2d(
lv109,
resnetv22_stage4_conv3_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv111: R.Tuple(
R.Tensor((1, 512, 7, 7), dtype="float32"),
R.Tensor((512,), dtype="float32"),
R.Tensor((512,), dtype="float32"),
) = R.nn.batch_norm(
lv110,
resnetv22_stage4_batchnorm3_gamma,
resnetv22_stage4_batchnorm3_beta,
resnetv22_stage4_batchnorm3_running_mea,
resnetv22_stage4_batchnorm3_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv112: R.Tensor((1, 512, 7, 7), dtype="float32") = lv111[0]
lv113: R.Tensor((512,), dtype="float32") = lv111[1]
lv114: R.Tensor((512,), dtype="float32") = lv111[2]
lv115: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.relu(lv112)
lv116: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.conv2d(
lv115,
resnetv22_stage4_conv4_weight,
strides=[1, 1],
padding=[1, 1, 1, 1],
dilation=[1, 1],
groups=1,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="NCHW",
out_dtype="void",
)
lv117: R.Tensor((1, 512, 7, 7), dtype="float32") = R.add(lv116, lv104)
lv118: R.Tuple(
R.Tensor((1, 512, 7, 7), dtype="float32"),
R.Tensor((512,), dtype="float32"),
R.Tensor((512,), dtype="float32"),
) = R.nn.batch_norm(
lv117,
resnetv22_batchnorm2_gamma,
resnetv22_batchnorm2_beta,
resnetv22_batchnorm2_running_mea,
resnetv22_batchnorm2_running_var,
axis=1,
epsilon=9.9999997473787516e-06,
center=True,
scale=True,
momentum=0.10000000000000001,
)
lv119: R.Tensor((1, 512, 7, 7), dtype="float32") = lv118[0]
lv120: R.Tensor((512,), dtype="float32") = lv118[1]
lv121: R.Tensor((512,), dtype="float32") = lv118[2]
lv122: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.relu(lv119)
lv123: R.Tensor((1, 512, 1, 1), dtype="float32") = R.mean(
lv122, axis=[2, 3], keepdims=True
)
lv124: R.Tensor((1, 512), dtype="float32") = R.reshape(lv123, R.shape([1, 512]))
lv125: R.Tensor((512, 1000), dtype="float32") = R.permute_dims(
resnetv22_dense0_weight, axes=[1, 0]
)
lv126: R.Tensor((1, 1000), dtype="float32") = R.matmul(
lv124, lv125, out_dtype="void"
)
gv: R.Tensor((1, 1000), dtype="float32") = R.add(lv126, resnetv22_dense0_bias)
R.output(gv)
return gv
verify(Resnet, target)
if __name__ == "__main__":
tvm.testing.main()