| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import numpy as np |
| import tvm |
| import tvm.testing |
| |
| from tvm import relax, rpc |
| from tvm.contrib import utils |
| from tvm.relax.testing import nn |
| from tvm.script import relax as R |
| |
| |
| def get_exec(data_shape): |
| builder = relax.BlockBuilder() |
| weight1_np = np.random.randn(64, 64).astype("float32") |
| weight2_np = np.random.randn(64, 64).astype("float32") |
| |
| with builder.function("main"): |
| model = nn.Sequential( |
| nn.Linear(data_shape[1], weight1_np.shape[0], bias=False), |
| nn.ReLU(), |
| nn.Linear(weight2_np.shape[0], weight2_np.shape[1], bias=False), |
| nn.ReLU(), |
| ) |
| data = nn.Placeholder(data_shape, name="data") |
| output = model(data) |
| params = [data] + model.parameters() |
| builder.emit_func_output(output, params=params) |
| |
| mod = builder.get() |
| |
| params = {"linear_weight": weight1_np, "linear_weight1": weight2_np} |
| mod = relax.transform.BindParams("main", params)(mod) |
| |
| target = "llvm" |
| return tvm.compile(mod, target) |
| |
| |
| def test_conv2d_cpu(): |
| data_np = np.random.randn(1, 64).astype("float32") |
| ex = get_exec(data_np.shape) |
| |
| vm = relax.VirtualMachine(ex, tvm.cpu(), profile=True) |
| report = vm.profile("main", tvm.runtime.tensor(data_np)) |
| print(report) |
| |
| assert "Duration" in str(report) |
| assert "matmul" in str(report) |
| |
| |
| def with_rpc(ex, f, data_np): |
| temp = utils.tempdir() |
| path = temp.relpath("vm_library.so") |
| ex.export_library(path) |
| |
| server = rpc.Server("127.0.0.1") |
| remote = rpc.connect(server.host, server.port, session_timeout=10) |
| |
| remote.upload(path) |
| rexec = remote.load_module("vm_library.so") |
| |
| device = remote.cpu() |
| |
| vm = relax.VirtualMachine(rexec, device=device, profile=True) |
| data = tvm.runtime.tensor(data_np, device) |
| |
| f(vm, data) |
| |
| |
| def test_rpc(): |
| data_np = np.random.randn(1, 64).astype("float32") |
| ex = get_exec(data_np.shape) |
| |
| def callback(vm, data): |
| vm.profile("main", data) |
| |
| vm.set_input("main", data) |
| report = vm.profile("main") |
| |
| assert "matmul" in str(report) |
| print(report) |
| |
| with_rpc(ex, callback, data_np) |
| |
| |
| def test_tuple(): |
| @tvm.script.ir_module |
| class NestedTuple: |
| @R.function |
| def main( |
| x: R.Tensor((16,), "float32") |
| ) -> R.Tuple( |
| R.Tuple( |
| R.Tensor((16,), "float32"), |
| R.Tuple( |
| R.Tensor((16,), "float32"), |
| ), |
| ), |
| R.Tensor((16,), "float32"), |
| ): |
| return ((x, (x,)), x) |
| |
| target = "llvm" |
| ex = tvm.compile(NestedTuple, target) |
| |
| data_np = np.random.randn(16).astype("float32") |
| |
| def callback(vm, data): |
| report = vm.profile("main", data) |
| assert "vm.builtin.make_tuple" in str(report) |
| |
| with_rpc(ex, callback, data_np) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |