| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import numpy as np |
| import tvm |
| import tvm.testing |
| |
| from tvm import relax |
| from tvm.relax.testing import nn |
| from tvm.relax.testing.lib_comparator import LibCompareVMInstrument |
| |
| |
| def get_exec(data_shape): |
| builder = relax.BlockBuilder() |
| weight1_np = np.random.randn(64, 64).astype("float32") |
| weight2_np = np.random.randn(64, 64).astype("float32") |
| |
| with builder.function("main"): |
| model = nn.Sequential( |
| nn.Linear(data_shape[1], weight1_np.shape[0], bias=False), |
| nn.ReLU(), |
| nn.Linear(weight2_np.shape[0], weight2_np.shape[1], bias=False), |
| nn.ReLU(), |
| ) |
| data = nn.Placeholder(data_shape, name="data") |
| output = model(data) |
| params = [data] + model.parameters() |
| builder.emit_func_output(output, params=params) |
| |
| mod = builder.get() |
| |
| params = {"linear_weight": weight1_np, "linear_weight1": weight2_np} |
| mod = relax.transform.BindParams("main", params)(mod) |
| |
| target = "llvm" |
| return tvm.compile(mod, target) |
| |
| |
| def get_exec_int32(data_shape): |
| builder = relax.BlockBuilder() |
| |
| with builder.function("main"): |
| model = nn.ReLU() |
| data = nn.Placeholder(data_shape, dtype="int32", name="data") |
| output = model(data) |
| params = [data] + model.parameters() |
| builder.emit_func_output(output, params=params) |
| |
| mod = builder.get() |
| target = "llvm" |
| return tvm.compile(mod, target) |
| |
| |
| def test_conv2d_cpu(): |
| data_np = np.random.randn(1, 64).astype("float32") |
| ex = get_exec(data_np.shape) |
| vm = relax.VirtualMachine(ex, tvm.cpu()) |
| hit_count = {} |
| |
| def instrument(func, name, before_run, ret_val, *args): |
| if (name, before_run) not in hit_count: |
| hit_count[(name, before_run)] = 0 |
| hit_count[(name, before_run)] += 1 |
| assert callable(func) |
| if before_run: |
| assert ret_val is None |
| if name == "matmul": |
| return relax.VMInstrumentReturnKind.SKIP_RUN |
| |
| vm.set_instrument(instrument) |
| vm["main"](tvm.runtime.tensor(data_np)) |
| assert hit_count[("matmul", True)] == 2 |
| assert ("matmul", False) not in hit_count |
| assert hit_count[("relu", True)] == 2 |
| assert hit_count[("relu", False)] == 2 |
| |
| |
| def test_lib_comparator(): |
| data_np = np.random.randn(1, 64).astype("int32") |
| ex = get_exec_int32(data_np.shape) |
| vm = relax.VirtualMachine(ex, tvm.cpu()) |
| # compare against library module |
| cmp = LibCompareVMInstrument(vm.module.imports[0], tvm.cpu(), verbose=False) |
| vm.set_instrument(cmp) |
| vm["main"](tvm.runtime.tensor(data_np)) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |