| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import pytest |
| |
| import tvm |
| from tvm import relax |
| |
| import tvm.script |
| from tvm.script import ir as I, relax as R, tir as T |
| |
| |
| def test_vm_builtin_lower_mem_alloc_storage(): |
| @I.ir_module |
| class Before: |
| @R.function |
| def main(x: R.Tensor(("m", "n"), "float32")) -> R.Tensor: |
| R.func_attr({"relax.force_pure": True}) |
| m, n = T.int64(), T.int64() |
| |
| storage = R.memory.alloc_storage(R.shape([m * n * 4]), 0, "global", "uint8") |
| alloc = R.memory.alloc_tensor(storage, 0, R.shape([m, n]), "float32") |
| _ = R.call_packed( |
| "test.op.identity", x, alloc, sinfo_args=(R.Tensor(ndim=2, dtype="float32")) |
| ) |
| gv0 = alloc |
| return gv0 |
| |
| @I.ir_module |
| class Expected: |
| @R.function |
| def main(x: R.Tensor(("m", "n"), "float32")) -> R.Tensor: |
| # we expected RemovePurityChecking to have been called first |
| R.func_attr({"relax.force_pure": True}) |
| m, n = T.int64(), T.int64() |
| |
| storage = R.vm.alloc_storage(R.shape([m * n * 4]), R.prim_value(0), "uint8", "global") |
| alloc = R.vm.alloc_tensor(storage, R.prim_value(0), R.shape([m, n]), "float32") |
| |
| _ = R.call_packed( |
| "test.op.identity", x, alloc, sinfo_args=(R.Tensor(ndim=2, dtype="float32")) |
| ) |
| gv0 = alloc |
| return gv0 |
| |
| After = relax.transform.LowerRuntimeBuiltin()(Before) |
| tvm.ir.assert_structural_equal(Expected, After) |
| |
| |
| def test_vm_builtin_alloc_tensor_raises_error(): |
| """R.builtin.alloc_tensor should be handled earlier""" |
| |
| @I.ir_module |
| class Before: |
| @R.function |
| def main(x: R.Tensor(("m", "n"), "float32")) -> R.Tensor: |
| R.func_attr({"relax.force_pure": True}) |
| m, n = T.int64(), T.int64() |
| |
| alloc = R.builtin.alloc_tensor(R.shape([m, n]), runtime_device_index=0, dtype="float32") |
| _ = R.call_packed( |
| "test.op.identity", x, alloc, sinfo_args=(R.Tensor(ndim=2, dtype="float32")) |
| ) |
| gv0 = alloc |
| return gv0 |
| |
| with pytest.raises(tvm.TVMError): |
| relax.transform.LowerRuntimeBuiltin()(Before) |
| |
| |
| def test_vm_reshape_may_be_var(): |
| """R.reshape does not require an in-line R.shape""" |
| |
| @I.ir_module |
| class Before: |
| @R.function |
| def main(A: R.Tensor([16], "float32"), shape: R.Shape): |
| R.func_attr({"relax.force_pure": True}) |
| reshape = R.reshape(A, shape) |
| return reshape |
| |
| @I.ir_module |
| class Expected: |
| @R.function |
| def main(A: R.Tensor([16], "float32"), shape: R.Shape): |
| R.func_attr({"relax.force_pure": True}) |
| reshape = R.call_packed( |
| "vm.builtin.reshape", |
| A, |
| shape, |
| sinfo_args=R.Tensor(shape, dtype="float32"), |
| ) |
| return reshape |
| |
| After = relax.transform.VMBuiltinLower()(Before) |
| |
| tvm.ir.assert_structural_equal(Expected, After) |
| |
| |
| def test_vm_reshape_using_tensor_to_shape(): |
| """Shape argument of R.reshape may come from tensor_to_shape""" |
| |
| @I.ir_module |
| class Before: |
| @R.function |
| def main(A: R.Tensor([16], "float32"), shape_tensor: R.Tensor([2], "int64")): |
| R.func_attr({"relax.force_pure": True}) |
| shape = R.tensor_to_shape(shape_tensor) |
| reshape = R.reshape(A, shape) |
| return reshape |
| |
| @I.ir_module |
| class Expected: |
| @R.function |
| def main(A: R.Tensor([16], "float32"), shape_tensor: R.Tensor([2], "int64")): |
| R.func_attr({"relax.force_pure": True}) |
| |
| shape = R.call_packed( |
| "vm.builtin.tensor_to_shape", |
| shape_tensor, |
| sinfo_args=R.Shape(ndim=2), |
| ) |
| reshape = R.call_packed( |
| "vm.builtin.reshape", |
| A, |
| shape, |
| sinfo_args=R.Tensor(shape, dtype="float32"), |
| ) |
| return reshape |
| |
| After = relax.transform.VMBuiltinLower()(Before) |
| |
| tvm.ir.assert_structural_equal(Expected, After) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |