blob: 2bc5e9ea70304af280e6f60e73df48fc30f22967 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import pytest
import tvm
import tvm.script
import tvm.testing
from tvm import relax
from tvm.script import relax as R, ir as I
def test_multinomial_from_uniform():
@I.ir_module
class CallSample:
@R.function
def foo(x: R.Tensor((3, 5), "float32"), y: R.Tensor((3, 1), "float32")):
z = R.call_pure_packed(
"vm.builtin.multinomial_from_uniform",
x,
y,
sinfo_args=(R.Tensor((3, 1), dtype="int64")),
)
return z
mod = CallSample
target = tvm.target.Target("llvm", host="llvm")
ex = tvm.compile(mod, target)
np_rand = np.random.rand(3, 5).astype(np.float32)
# normalize it to get the random prob
np_prob = np_rand / np_rand.sum(axis=1, keepdims=True)
nd_prob = tvm.runtime.tensor(np_prob)
# special sample to get deterministic results
nd_sample = tvm.runtime.tensor(np.array([[1.0], [0], [1]]).astype(np.float32))
vm = relax.VirtualMachine(ex, tvm.cpu())
res = vm["foo"](nd_prob, nd_sample)
tvm.testing.assert_allclose(res.numpy(), np.array([[4], [0], [4]]).astype(np.int64))
@tvm.testing.parametrize_targets("cuda")
def test_alloc_tensor_raises_out_of_memory(target, dev):
"""Out-of-memory exceptions may be raised from VM
This is a regression test. In previous implementations, the Relax
VM would segfault if the built-in function
"vm.builtin.alloc_storage" was unable to allocate the requested
buffer.
"""
@I.ir_module
class Module:
@R.function
def main():
# Allocate a 1-petabyte tensor to trigger OOM. If the CI
# ever runs on a device with more than 1 petabyte of GPU
# memory, this test will need to be updated.
output = R.builtin.alloc_tensor(R.shape([1024, 1024, 1024, 1024, 1024]), "uint8", 0)
return output
built = tvm.compile(Module, target=target)
vm = relax.VirtualMachine(built, dev)
with pytest.raises(Exception, match="CUDA: out of memory"):
vm["main"]()
if __name__ == "__main__":
tvm.testing.main()