| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| """Test Naive allocator with memory scope for Relax VM""" |
| |
| import numpy as np |
| |
| import tvm |
| import tvm.testing |
| from tvm import relax |
| from tvm.script import ir as I |
| from tvm.script import relax as R |
| from tvm.script import tir as T |
| |
| |
| @I.ir_module |
| class Module: |
| @T.prim_func |
| def add( |
| arg0: T.Buffer((2, 2), "float32"), |
| arg1: T.Buffer((2, 2), "float32"), |
| output: T.Buffer((2, 2), "float32"), |
| ): |
| T.func_attr({"operator_name": "relax.add"}) |
| for ax0 in range(2): |
| for ax1 in range(2): |
| with T.block("T_add"): |
| v_ax0 = T.axis.spatial(2, ax0) |
| v_ax1 = T.axis.spatial(2, ax1) |
| T.reads(arg0[v_ax0, v_ax1], arg1[v_ax0, v_ax1]) |
| T.writes(output[v_ax0, v_ax1]) |
| output[v_ax0, v_ax1] = arg0[v_ax0, v_ax1] + arg1[v_ax0, v_ax1] |
| |
| @R.function(pure=False) |
| def main(x: R.Tensor((2, 2), dtype="float32")): |
| cls = Module |
| storage = R.vm.alloc_storage( |
| R.shape([2 * 2]), runtime_device_index=0, dtype="float32", storage_scope="global" |
| ) |
| alloc = R.vm.alloc_tensor(storage, offset=0, shape=R.shape([2, 2]), dtype="float32") |
| _: R.Tuple = cls.add(x, x, alloc) |
| out: R.Tensor((2, 2), dtype="float32") = alloc |
| return out |
| |
| |
| def test_alloc_storage_with_scope_global(): |
| arg0 = np.random.uniform(size=(2, 2)).astype(np.float32) |
| output_ref = arg0 + arg0 |
| mod = Module |
| target = "llvm" |
| with tvm.transform.PassContext(opt_level=3): |
| lib = tvm.relax.build(mod, target=target, exec_mode="compiled") |
| |
| dev = tvm.cpu() |
| # This is the important line which tests nd allocator |
| vm_rt = relax.VirtualMachine(lib, dev, memory_cfg="naive") |
| x = tvm.runtime.tensor(arg0, dev) |
| vm_rt.set_input("main", x) |
| vm_rt.invoke_stateful("main") |
| output = vm_rt.get_outputs("main").numpy() |
| tvm.testing.assert_allclose(output_ref, output) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |