blob: 3839ae1234062fdb43873cc910de3e6fbbc8bed3 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Test Naive allocator with memory scope for Relax VM"""
import numpy as np
import tvm
import tvm.testing
from tvm import relax
from tvm.script import ir as I
from tvm.script import relax as R
from tvm.script import tir as T
@I.ir_module
class Module:
@T.prim_func
def add(
arg0: T.Buffer((2, 2), "float32"),
arg1: T.Buffer((2, 2), "float32"),
output: T.Buffer((2, 2), "float32"),
):
T.func_attr({"operator_name": "relax.add"})
for ax0 in range(2):
for ax1 in range(2):
with T.block("T_add"):
v_ax0 = T.axis.spatial(2, ax0)
v_ax1 = T.axis.spatial(2, ax1)
T.reads(arg0[v_ax0, v_ax1], arg1[v_ax0, v_ax1])
T.writes(output[v_ax0, v_ax1])
output[v_ax0, v_ax1] = arg0[v_ax0, v_ax1] + arg1[v_ax0, v_ax1]
@R.function(pure=False)
def main(x: R.Tensor((2, 2), dtype="float32")):
cls = Module
storage = R.vm.alloc_storage(
R.shape([2 * 2]), runtime_device_index=0, dtype="float32", storage_scope="global"
)
alloc = R.vm.alloc_tensor(storage, offset=0, shape=R.shape([2, 2]), dtype="float32")
_: R.Tuple = cls.add(x, x, alloc)
out: R.Tensor((2, 2), dtype="float32") = alloc
return out
def test_alloc_storage_with_scope_global():
arg0 = np.random.uniform(size=(2, 2)).astype(np.float32)
output_ref = arg0 + arg0
mod = Module
target = "llvm"
with tvm.transform.PassContext(opt_level=3):
lib = tvm.relax.build(mod, target=target, exec_mode="compiled")
dev = tvm.cpu()
# This is the important line which tests nd allocator
vm_rt = relax.VirtualMachine(lib, dev, memory_cfg="naive")
x = tvm.runtime.tensor(arg0, dev)
vm_rt.set_input("main", x)
vm_rt.invoke_stateful("main")
output = vm_rt.get_outputs("main").numpy()
tvm.testing.assert_allclose(output_ref, output)
if __name__ == "__main__":
tvm.testing.main()