blob: 66e0adac3d222a87c61049a7860a435a67eea3a4 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Optional, Union
import tvm
import tvm.script
import tvm.testing
from tvm import IRModule, relax
from tvm.script import relax as R
def _check(
parsed: Union[relax.Function, IRModule],
expect: Optional[Union[relax.Function, IRModule]],
):
test = parsed.script(show_meta=True)
roundtrip_mod = tvm.script.from_source(test)
tvm.ir.assert_structural_equal(parsed, roundtrip_mod)
if expect:
tvm.ir.assert_structural_equal(parsed, expect)
def test_all_class_non_max_suppression():
@R.function
def foo(
boxes: R.Tensor((10, 5, 4), "float32"),
scores: R.Tensor((10, 8, 5), "float32"),
max_output_boxes_per_class: R.Tensor((), "int64"),
iou_threshold: R.Tensor((), "float32"),
score_threshold: R.Tensor((), "float32"),
) -> R.Tuple(R.Tensor((400, 3), "int64"), R.Tensor((1,), "int64")):
gv: R.Tuple(
R.Tensor((400, 3), "int64"), R.Tensor((1,), "int64")
) = R.vision.all_class_non_max_suppression(
boxes,
scores,
max_output_boxes_per_class,
iou_threshold,
score_threshold,
"onnx",
)
return gv
boxes = relax.Var("boxes", R.Tensor((10, 5, 4), "float32"))
scores = relax.Var("scores", R.Tensor((10, 8, 5), "float32"))
max_output_boxes_per_class = relax.Var("max_output_boxes_per_class", R.Tensor((), "int64"))
iou_threshold = relax.Var("iou_threshold", R.Tensor((), "float32"))
score_threshold = relax.Var("score_threshold", R.Tensor((), "float32"))
bb = relax.BlockBuilder()
with bb.function(
"foo", [boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold]
):
gv = bb.emit(
relax.op.vision.all_class_non_max_suppression(
boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, "onnx"
)
)
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
if __name__ == "__main__":
tvm.testing.main()