blob: 8e01fa6f6215de818e1065c32ebc85b04d13e8bb [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Optional, Union
import tvm
import tvm.script
import tvm.testing
from tvm import IRModule, relax
from tvm.script import relax as R
def _check(
parsed: Union[relax.Function, IRModule],
expect: Optional[Union[relax.Function, IRModule]],
):
test = parsed.script(show_meta=True)
roundtrip_mod = tvm.script.from_source(test)
tvm.ir.assert_structural_equal(parsed, roundtrip_mod)
if expect:
tvm.ir.assert_structural_equal(parsed, expect)
def test_unique():
@R.function
def foo(
x: R.Tensor((2, 3, 4), dtype="float32")
) -> R.Tuple(
R.Tensor(dtype="float32", ndim=3),
R.Tensor(dtype="int64", ndim=1),
R.Tensor(dtype="int64", ndim=1),
):
gv: R.Tuple(
R.Tensor(dtype="float32", ndim=3),
R.Tensor(dtype="int64", ndim=1),
R.Tensor(dtype="int64", ndim=1),
) = R.unique(
x, sorted=True, return_index=False, return_inverse=True, return_counts=True, axis=1
)
return gv
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(
relax.op.unique(x, sorted=True, return_inverse=True, return_counts=True, axis=1)
)
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
if __name__ == "__main__":
tvm.testing.main()