| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| from typing import Optional, Union |
| |
| import tvm |
| import tvm.script |
| import tvm.testing |
| from tvm import IRModule, relax |
| from tvm.script import relax as R |
| |
| |
| def _check( |
| parsed: Union[relax.Function, IRModule], |
| expect: Optional[Union[relax.Function, IRModule]], |
| ): |
| test = parsed.script(show_meta=True) |
| roundtrip_mod = tvm.script.from_source(test) |
| tvm.ir.assert_structural_equal(parsed, roundtrip_mod) |
| if expect: |
| tvm.ir.assert_structural_equal(parsed, expect) |
| |
| |
| def test_conv1d(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 3, 228), "float16"), w: R.Tensor((16, 3, 5), "float16") |
| ) -> R.Tensor((2, 16, 224), "float16"): |
| gv: R.Tensor((2, 16, 224), "float16") = R.nn.conv1d(x, w, out_dtype="float16") |
| return gv |
| |
| x = relax.Var("x", R.Tensor([2, 3, 228], "float16")) |
| w = relax.Var("w", R.Tensor([16, 3, 5], "float16")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, w]): |
| gv = bb.emit(relax.op.nn.conv1d(x, w, out_dtype="float16")) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_conv1d_transpose(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 3, 228), "float16"), w: R.Tensor((3, 16, 5), "float16") |
| ) -> R.Tensor((2, 16, 232), "float16"): |
| gv: R.Tensor((2, 16, 232), "float16") = R.nn.conv1d_transpose(x, w, out_dtype="float16") |
| return gv |
| |
| x = relax.Var("x", R.Tensor([2, 3, 228], "float16")) |
| w = relax.Var("w", R.Tensor([3, 16, 5], "float16")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, w]): |
| gv = bb.emit(relax.op.nn.conv1d_transpose(x, w, out_dtype="float16")) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_conv2d(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 3, 228, 228), "float16"), w: R.Tensor((16, 3, 5, 5), "float16") |
| ) -> R.Tensor((2, 16, 224, 224), "float16"): |
| gv: R.Tensor((2, 16, 224, 224), "float16") = R.nn.conv2d(x, w, out_dtype="float16") |
| return gv |
| |
| x = relax.Var("x", R.Tensor([2, 3, 228, 228], "float16")) |
| w = relax.Var("w", R.Tensor([16, 3, 5, 5], "float16")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, w]): |
| gv = bb.emit(relax.op.nn.conv2d(x, w, out_dtype="float16")) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_conv2d_transpose(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 3, 228, 228), "float16"), w: R.Tensor((3, 16, 5, 5), "float16") |
| ) -> R.Tensor((2, 16, 232, 232), "float16"): |
| gv: R.Tensor((2, 16, 232, 232), "float16") = R.nn.conv2d_transpose( |
| x, w, out_dtype="float16" |
| ) |
| return gv |
| |
| x = relax.Var("x", R.Tensor([2, 3, 228, 228], "float16")) |
| w = relax.Var("w", R.Tensor([3, 16, 5, 5], "float16")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, w]): |
| gv = bb.emit(relax.op.nn.conv2d_transpose(x, w, out_dtype="float16")) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_max_pool2d(): |
| @R.function |
| def foo( |
| x: R.Tensor((1, 1, 32, 32), dtype="float32") |
| ) -> R.Tensor((1, 1, 30, 30), dtype="float32"): |
| gv: R.Tensor((1, 1, 30, 30), dtype="float32") = R.nn.max_pool2d(x, pool_size=(3,)) |
| return gv |
| |
| x = relax.Var("x", R.Tensor([1, 1, 32, 32], "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x]): |
| gv = bb.emit(relax.op.nn.max_pool2d(x, pool_size=(3,))) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_avg_pool2d(): |
| @R.function |
| def foo( |
| x: R.Tensor((1, 1, 32, 32), dtype="float32") |
| ) -> R.Tensor((1, 1, 30, 30), dtype="float32"): |
| gv: R.Tensor((1, 1, 30, 30), dtype="float32") = R.nn.avg_pool2d(x, pool_size=(3,)) |
| return gv |
| |
| x = relax.Var("x", R.Tensor([1, 1, 32, 32], "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x]): |
| gv = bb.emit(relax.op.nn.avg_pool2d(x, pool_size=(3,))) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_adaptive_avg_pool2d(): |
| @R.function |
| def foo(x: R.Tensor((2, 64, 8, 9), "float32")) -> R.Tensor((2, 64, 7, 7), "float32"): |
| gv: R.Tensor((2, 64, 7, 7), "float32") = R.nn.adaptive_avg_pool2d(x, output_size=(7, 7)) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 64, 8, 9), dtype="float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x]): |
| gv = bb.emit(relax.op.nn.adaptive_avg_pool2d(x, output_size=(7, 7))) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_gelu(): |
| @R.function |
| def foo(x: R.Tensor((2, 3), "float32")) -> R.Tensor((2, 3), "float32"): |
| gv: R.Tensor((2, 3), "float32") = R.nn.gelu(x) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 3), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x]): |
| gv = bb.emit(relax.op.nn.gelu(x)) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_softmax(): |
| @R.function |
| def foo(x: R.Tensor((2, 3), "float32")) -> R.Tensor((2, 3), "float32"): |
| gv: R.Tensor((2, 3), "float32") = R.nn.softmax(x) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 3), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x]): |
| gv = bb.emit(relax.op.nn.softmax(x)) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_log_softmax(): |
| @R.function |
| def foo(x: R.Tensor((2, 3), "float32")) -> R.Tensor((2, 3), "float32"): |
| gv: R.Tensor((2, 3), "float32") = R.nn.log_softmax(x) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 3), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x]): |
| gv = bb.emit(relax.op.nn.log_softmax(x)) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_batch_norm(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 4, 3, 3), dtype="float32"), |
| gamma: R.Tensor((4,), dtype="float32"), |
| beta: R.Tensor((4,), dtype="float32"), |
| moving_mean: R.Tensor((4,), dtype="float32"), |
| moving_var: R.Tensor((4,), dtype="float32"), |
| ) -> R.Tuple( |
| R.Tensor((2, 4, 3, 3), dtype="float32"), |
| R.Tensor((4,), dtype="float32"), |
| R.Tensor((4,), dtype="float32"), |
| ): |
| gv: R.Tuple( |
| R.Tensor((2, 4, 3, 3), dtype="float32"), |
| R.Tensor((4,), dtype="float32"), |
| R.Tensor((4,), dtype="float32"), |
| ) = R.nn.batch_norm(x, gamma, beta, moving_mean, moving_var, axis=1) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 4, 3, 3), "float32")) |
| gamma = relax.Var("gamma", R.Tensor((4,), "float32")) |
| beta = relax.Var("beta", R.Tensor((4,), "float32")) |
| moving_mean = relax.Var("moving_mean", R.Tensor((4,), "float32")) |
| moving_var = relax.Var("moving_var", R.Tensor((4,), "float32")) |
| |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, gamma, beta, moving_mean, moving_var]): |
| gv = bb.emit(relax.op.nn.batch_norm(x, gamma, beta, moving_mean, moving_var, axis=1)) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_layer_norm(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 3, 4, 5), "float32"), |
| gamma: R.Tensor((4, 5), "float32"), |
| beta: R.Tensor((4, 5), "float32"), |
| ) -> R.Tensor((2, 3, 4, 5), "float32"): |
| gv: R.Tensor((2, 3, 4, 5), "float32") = R.nn.layer_norm(x, gamma, beta, axes=[-2, -1]) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32")) |
| gamma = relax.Var("gamma", R.Tensor((4, 5), "float32")) |
| beta = relax.Var("beta", R.Tensor((4, 5), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, gamma, beta]): |
| gv = bb.emit(relax.op.nn.layer_norm(x, gamma, beta, axes=[-2, -1])) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_group_norm(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 4, 4, 5), "float32"), |
| gamma: R.Tensor((4,), "float32"), |
| beta: R.Tensor((4,), "float32"), |
| ) -> R.Tensor((2, 4, 4, 5), "float32"): |
| gv: R.Tensor((2, 4, 4, 5), "float32") = R.nn.group_norm( |
| x, gamma, beta, num_groups=2, channel_axis=1, axes=[2, 3] |
| ) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 4, 4, 5), "float32")) |
| gamma = relax.Var("gamma", R.Tensor((4,), "float32")) |
| beta = relax.Var("beta", R.Tensor((4,), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, gamma, beta]): |
| gv = bb.emit( |
| relax.op.nn.group_norm(x, gamma, beta, num_groups=2, channel_axis=1, axes=[2, 3]) |
| ) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_dropout(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 3), "float32") |
| ) -> R.Tuple(R.Tensor((2, 3), "float32"), R.Tensor((2, 3), "float32")): |
| gv: R.Tuple(R.Tensor((2, 3), "float32"), R.Tensor((2, 3), "float32")) = R.nn.dropout( |
| x, rate=0.5 |
| ) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 3), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x]): |
| gv = bb.emit(relax.op.nn.dropout(x)) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_cross_entropy_with_logits(): |
| @R.function |
| def foo( |
| predictions: R.Tensor((2, 3), "float32"), labels: R.Tensor((2, 3), "float32") |
| ) -> R.Tensor((), "float32"): |
| gv: R.Tensor((), "float32") = R.nn.cross_entropy_with_logits(predictions, labels) |
| return gv |
| |
| predictions = relax.Var("predictions", R.Tensor((2, 3), "float32")) |
| labels = relax.Var("labels", R.Tensor((2, 3), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [predictions, labels]): |
| gv = bb.emit(relax.op.nn.cross_entropy_with_logits(predictions, labels)) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_nll_loss(): |
| @R.function |
| def foo( |
| predictions: R.Tensor((3, 5, 10, 10), dtype="float32"), |
| targets: R.Tensor((3, 10, 10), dtype="int64"), |
| weights: R.Tensor((5,), dtype="float32"), |
| ) -> R.Tensor((), dtype="float32"): |
| gv: R.Tensor((), dtype="float32") = R.nn.nll_loss(predictions, targets, weights, "mean", -1) |
| return gv |
| |
| predictions = relax.Var("predictions", R.Tensor((3, 5, 10, 10), "float32")) |
| targets = relax.Var("targets", R.Tensor((3, 10, 10), "int64")) |
| weights = relax.Var("weights", R.Tensor((5,), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [predictions, targets, weights]): |
| gv = bb.emit( |
| relax.op.nn.nll_loss(predictions, targets, weights, reduction="mean", ignore_index=-1) |
| ) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_nll_loss_no_weights(): |
| @R.function |
| def foo( |
| predictions: R.Tensor((3, 5, 10, 10), dtype="float32"), |
| targets: R.Tensor((3, 10, 10), dtype="int64"), |
| ) -> R.Tensor((), dtype="float32"): |
| gv: R.Tensor((), dtype="float32") = R.nn.nll_loss( |
| predictions, targets, reduction="mean", ignore_index=-1 |
| ) |
| return gv |
| |
| predictions = relax.Var("predictions", R.Tensor((3, 5, 10, 10), "float32")) |
| targets = relax.Var("targets", R.Tensor((3, 10, 10), "int64")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [predictions, targets]): |
| gv = bb.emit(relax.op.nn.nll_loss(predictions, targets, reduction="mean", ignore_index=-1)) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_prelu(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 4, 4, 5), "float32"), |
| alpha: R.Tensor((1,), "float32"), |
| ) -> R.Tensor((2, 4, 4, 5), "float32"): |
| gv: R.Tensor((2, 4, 4, 5), "float32") = R.nn.prelu(x, alpha) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 4, 4, 5), "float32")) |
| alpha = relax.Var("alpha", R.Tensor((1,), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, alpha]): |
| gv = bb.emit(relax.op.nn.prelu(x, alpha)) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |