blob: 694e7a688cf735a2603d8d975b4467f6e376dd0c [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Optional, Union
import tvm
import tvm.script
import tvm.testing
from tvm import IRModule, relax
from tvm.script import relax as R, ir as I
def _check(
parsed: Union[relax.Function, IRModule],
expect: Optional[Union[relax.Function, IRModule]],
):
test = parsed.script(show_meta=True)
roundtrip_mod = tvm.script.from_source(test)
tvm.ir.assert_structural_equal(parsed, roundtrip_mod)
if expect:
tvm.ir.assert_structural_equal(parsed, expect)
def test_broadcast_to():
@R.function
def foo(x: R.Tensor((2, 1, 3), "float32")) -> R.Tensor((4, 2, 5, 3), "float32"):
gv: R.Tensor((4, 2, 5, 3), "float32") = R.broadcast_to(x, (4, 2, 5, 3))
return gv
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 1, 3), "float32"))
with bb.function("foo", [x]):
gv = bb.emit(relax.op.broadcast_to(x, (4, 2, 5, 3)))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_concat():
@R.function
def foo(
x1: R.Tensor((1, 2, 3), "float32"),
x2: R.Tensor((1, 3, 3), "float32"),
x3: R.Tensor((1, 4, 3), "float32"),
) -> R.Tensor((1, 9, 3), "float32"):
gv: R.Tensor((1, 9, 3), "float32") = R.concat((x1, x2, x3), axis=1)
return gv
x1 = relax.Var("x1", R.Tensor((1, 2, 3), "float32"))
x2 = relax.Var("x2", R.Tensor((1, 3, 3), "float32"))
x3 = relax.Var("x3", R.Tensor((1, 4, 3), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x1, x2, x3]):
gv = bb.emit(relax.op.concat((x1, x2, x3), axis=1))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_concat_without_specified_axis():
@R.function
def foo(
x1: R.Tensor((2,), "float32"), x2: R.Tensor((3,), "float32"), x3: R.Tensor((4,), "float32")
) -> R.Tensor((9,), "float32"):
gv: R.Tensor((9,), "float32") = R.concat((x1, x2, x3), axis=None)
return gv
x1 = relax.Var("x1", R.Tensor((2,), "float32"))
x2 = relax.Var("x2", R.Tensor((3,), "float32"))
x3 = relax.Var("x3", R.Tensor((4,), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x1, x2, x3]):
gv = bb.emit(relax.op.concat((x1, x2, x3), axis=None))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_expand_dims():
@R.function
def foo(x: R.Tensor((2, 3, 4), "float32")) -> R.Tensor((2, 1, 1, 1, 3, 1, 4, 1), "float32"):
gv: R.Tensor((2, 1, 1, 1, 3, 1, 4, 1), "float32") = R.expand_dims(x, axis=[-1, 1, -6, 3, 5])
return gv
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.expand_dims(x, axis=[-1, 1, -6, 3, 5]))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_flatten():
@R.function
def foo(x: R.Tensor((3, 4, 5), "float32")) -> R.Tensor((60,), "float32"):
gv: R.Tensor((60,), "float32") = R.flatten(x)
return gv
x = relax.Var("x", R.Tensor((3, 4, 5), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.flatten(x))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_layout_transform():
transformation = lambda n, c, h, w: (n, h, w, c)
@R.function
def foo(x: R.Tensor((2, 3, 4, 5), "float32")):
gv: R.Tensor((2, 4, 5, 3), "float32") = R.layout_transform(x, index_map=transformation)
return gv
x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.layout_transform(x, index_map=transformation))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_layout_transform_with_padding():
transformation = lambda n, c, h, w: (n, c // 3, h, w, c % 3)
@R.function
def foo(x: R.Tensor((10, 20, 2, 2), "float32")):
gv: R.Tensor((10, 7, 2, 2, 3), "float32") = R.layout_transform(
x, index_map=transformation, pad_value=2
)
return gv
x = relax.Var("x", R.Tensor((10, 20, 2, 2), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.layout_transform(x, index_map=transformation, pad_value=2))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_permute_dims():
@R.function
def foo(x: R.Tensor((1, 2, 3, 4), "float32")) -> R.Tensor((2, 4, 3, 1), "float32"):
gv: R.Tensor((2, 4, 3, 1), "float32") = R.permute_dims(x, axes=[1, -1, 2, -4])
return gv
x = relax.Var("x", R.Tensor((1, 2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.permute_dims(x, axes=[1, -1, 2, -4]))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_permute_dims_none_arg():
@R.function
def foo(x: R.Tensor((1, 2, 3, 4), "float32")) -> R.Tensor((4, 3, 2, 1), "float32"):
gv: R.Tensor((4, 3, 2, 1), "float32") = R.permute_dims(x)
return gv
x = relax.Var("x", R.Tensor((1, 2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.permute_dims(x))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_reshape():
@R.function
def foo(x: R.Tensor((1, 2, 3, 4), "float32")) -> R.Tensor((8, 3), "float32"):
gv: R.Tensor((8, 3), "float32") = R.reshape(x, (8, 3))
return gv
x = relax.Var("x", R.Tensor((1, 2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.reshape(x, shape=(8, 3)))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_reshape_infer_dim():
@R.function
def foo(x: R.Tensor((1, 2, 3, 4), "float32")) -> R.Tensor((8, 1, 3), "float32"):
gv: R.Tensor((8, 1, 3), "float32") = R.reshape(x, (8, -1, 3))
return gv
x = relax.Var("x", R.Tensor((1, 2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.reshape(x, shape=(8, -1, 3)))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_split_by_indices():
@R.function
def foo(
x: R.Tensor((2, 10, 4), dtype="float32")
) -> R.Tuple(
R.Tensor((2, 0, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 4, 4), dtype="float32"),
R.Tensor((2, 0, 4), dtype="float32"),
R.Tensor((2, 4, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 0, 4), dtype="float32"),
R.Tensor((2, 1, 4), dtype="float32"),
):
gv: R.Tuple(
R.Tensor((2, 0, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 4, 4), dtype="float32"),
R.Tensor((2, 0, 4), dtype="float32"),
R.Tensor((2, 4, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 0, 4), dtype="float32"),
R.Tensor((2, 1, 4), dtype="float32"),
) = R.split(x, indices_or_sections=[-2, 2, 6, 4, 8, 12, 9], axis=1)
return gv
x = relax.Var("x", R.Tensor((2, 10, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.split(x, indices_or_sections=[-2, 2, 6, 4, 8, 12, 9], axis=1))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_split_by_n_section():
@R.function
def foo(
x: R.Tensor((2, 10, 4), dtype="float32")
) -> R.Tuple(
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
):
gv: R.Tuple(
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
R.Tensor((2, 2, 4), dtype="float32"),
) = R.split(x, indices_or_sections=5, axis=1)
return gv
x = relax.Var("x", R.Tensor((2, 10, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.split(x, indices_or_sections=5, axis=1))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_squeeze():
@R.function
def foo(x: R.Tensor((2, 1, 3, 1, 1, 4), "float32")) -> R.Tensor((2, 3, 4), "float32"):
gv: R.Tensor((2, 3, 4), "float32") = R.squeeze(x)
return gv
x = relax.Var("x", R.Tensor((2, 1, 3, 1, 1, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.squeeze(x))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_squeeze_with_indices():
@R.function
def foo(x: R.Tensor((2, 1, 3, 1, 1, 4), "float32")) -> R.Tensor((2, 3, 1, 4), "float32"):
gv: R.Tensor((2, 3, 1, 4), "float32") = R.squeeze(x, axis=[3, -5])
return gv
x = relax.Var("x", R.Tensor((2, 1, 3, 1, 1, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.squeeze(x, axis=[3, -5]))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_collapse_sum_like():
@R.function
def foo(
x: R.Tensor((3, 4, 5), "float32"), y: R.Tensor((4, 5), "float32")
) -> R.Tensor((4, 5), "float32"):
gv: R.Tensor((4, 5), "float32") = R.collapse_sum_like(x, y)
return gv
x = relax.Var("x", R.Tensor((3, 4, 5), "float32"))
y = relax.Var("y", R.Tensor((4, 5), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, y]):
gv = bb.emit(relax.op.collapse_sum_like(x, y))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_collapse_sum_to():
@R.function
def foo(x: R.Tensor((3, 4, 5), "float32")) -> R.Tensor((4, 5), "float32"):
gv: R.Tensor((4, 5), "float32") = R.collapse_sum_to(x, (4, 5))
return gv
x = relax.Var("x", R.Tensor((3, 4, 5), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.collapse_sum_to(x, (4, 5)))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_repeat():
@R.function
def foo(x: R.Tensor((2, 3, 4), "float32")):
gv = R.repeat(x, 3, 1)
return gv
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.repeat(x, 3, 1))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_repeat_no_axis():
@R.function
def foo(x: R.Tensor((2, 3, 4), "float32")):
gv = R.repeat(x, 3)
return gv
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.repeat(x, 3))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_tile():
@R.function
def foo(x: R.Tensor((2, 3, 4), "float32")):
gv = R.tile(x, (2, 3))
return gv
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.tile(x, (2, 3)))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_flip():
@R.function
def foo(x: R.Tensor((2, 3, 4), "float32")):
gv = R.flip(x, axis=1)
return gv
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x]):
gv = bb.emit(relax.op.flip(x, axis=1))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_to_vdevice():
@I.ir_module
class ToVDevice:
I.module_global_infos({"vdevice": [I.vdevice("llvm")]})
@R.function
def foo(x: R.Tensor((), "int32")) -> R.Tensor((), "int32"):
tensor = R.to_vdevice(x, "llvm")
return tensor
x = relax.Var("x", R.Tensor((), "int32"))
bb = relax.BlockBuilder()
vdev = I.vdevice("llvm")
with bb.function("foo", (x,)):
tensor = bb.emit(relax.op.to_vdevice(x, vdev))
bb.emit_func_output(tensor)
bb.get().update_global_info("vdevice", [vdev])
_check(ToVDevice, bb.get())
def test_hint_on_device():
@R.function
def foo(x: R.Tensor((), "int32")) -> R.Tensor((), "int32"):
r = R.hint_on_device(x, R.device(1, 0))
return r
x = relax.Var("x", R.Tensor((), "int32"))
bb = relax.BlockBuilder()
with bb.function("foo", (x,)):
tensor = bb.emit(relax.op.hint_on_device(x, R.cpu()))
bb.emit_func_output(tensor)
_check(foo, bb.get()["foo"])
if __name__ == "__main__":
tvm.testing.main()