blob: 89665b0dce86ca9ae147c5079b6bcee6c8953161 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Optional, Union
import tvm
import tvm.script
import tvm.testing
from tvm import IRModule, relax
from tvm.script import relax as R
def _check(
parsed: Union[relax.Function, IRModule],
expect: Optional[Union[relax.Function, IRModule]],
):
test = parsed.script(show_meta=True)
roundtrip_mod = tvm.script.from_source(test)
tvm.ir.assert_structural_equal(parsed, roundtrip_mod)
if expect:
tvm.ir.assert_structural_equal(parsed, expect)
def test_matmul():
@R.function
def foo(
x: R.Tensor((2, 3, 4, 5), "float32"), y: R.Tensor((6, 2, 3, 5, 7), "float32")
) -> R.Tensor((6, 2, 3, 4, 7), "float32"):
gv: R.Tensor((6, 2, 3, 4, 7), "float32") = R.matmul(x, y)
return gv
x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
y = relax.Var("y", R.Tensor((6, 2, 3, 5, 7), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, y]):
gv = bb.emit(relax.op.matmul(x, y))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
def test_linear():
@R.function
def foo(
x: R.Tensor((2, 3, 4, 5), "float32"),
w: R.Tensor((3, 5), "float32"),
bias: R.Tensor((3,), "float32"),
):
gv = R.linear(x, w, bias)
return gv
x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
w = relax.Var("y", R.Tensor((3, 5), "float32"))
bias = relax.Var("bias", R.Tensor((3,), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, w, bias]):
w_T = bb.emit(relax.op.permute_dims(w, axes=None))
matmul = bb.emit(relax.op.matmul(x, w_T))
out = matmul + bias
bb.emit_func_output(out)
_check(foo, bb.get()["foo"])
def test_einsum():
@R.function
def foo(x: R.Tensor((1, 4), "float32"), y: R.Tensor((2, 4), "float32")):
gv = R.einsum((x, y), "ij, ij -> i")
return gv
x = relax.Var("x", R.Tensor((1, 4), "float32"))
y = relax.Var("y", R.Tensor((2, 4), "float32"))
bb = relax.BlockBuilder()
with bb.function("foo", [x, y]):
gv = bb.emit(relax.op.einsum((x, y), "ij, ij -> i"))
bb.emit_func_output(gv)
_check(foo, bb.get()["foo"])
if __name__ == "__main__":
tvm.testing.main()