| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| from typing import Optional, Union |
| |
| import tvm |
| import tvm.script |
| import tvm.testing |
| from tvm import IRModule, relax |
| from tvm.script import relax as R |
| |
| |
| def _check( |
| parsed: Union[relax.Function, IRModule], |
| expect: Optional[Union[relax.Function, IRModule]], |
| ): |
| test = parsed.script(show_meta=True) |
| roundtrip_mod = tvm.script.from_source(test) |
| tvm.ir.assert_structural_equal(parsed, roundtrip_mod) |
| if expect: |
| tvm.ir.assert_structural_equal(parsed, expect) |
| |
| |
| def test_matmul(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 3, 4, 5), "float32"), y: R.Tensor((6, 2, 3, 5, 7), "float32") |
| ) -> R.Tensor((6, 2, 3, 4, 7), "float32"): |
| gv: R.Tensor((6, 2, 3, 4, 7), "float32") = R.matmul(x, y) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32")) |
| y = relax.Var("y", R.Tensor((6, 2, 3, 5, 7), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, y]): |
| gv = bb.emit(relax.op.matmul(x, y)) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_linear(): |
| @R.function |
| def foo( |
| x: R.Tensor((2, 3, 4, 5), "float32"), |
| w: R.Tensor((3, 5), "float32"), |
| bias: R.Tensor((3,), "float32"), |
| ): |
| gv = R.linear(x, w, bias) |
| return gv |
| |
| x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32")) |
| w = relax.Var("y", R.Tensor((3, 5), "float32")) |
| bias = relax.Var("bias", R.Tensor((3,), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, w, bias]): |
| w_T = bb.emit(relax.op.permute_dims(w, axes=None)) |
| matmul = bb.emit(relax.op.matmul(x, w_T)) |
| out = matmul + bias |
| bb.emit_func_output(out) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_einsum(): |
| @R.function |
| def foo(x: R.Tensor((1, 4), "float32"), y: R.Tensor((2, 4), "float32")): |
| gv = R.einsum((x, y), "ij, ij -> i") |
| return gv |
| |
| x = relax.Var("x", R.Tensor((1, 4), "float32")) |
| y = relax.Var("y", R.Tensor((2, 4), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [x, y]): |
| gv = bb.emit(relax.op.einsum((x, y), "ij, ij -> i")) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |