| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WA`RRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| from typing import Optional, Union |
| |
| import tvm |
| import tvm.testing |
| from tvm import IRModule, relax |
| from tvm.script.parser import relax as R |
| |
| |
| def _check( |
| parsed: Union[relax.Function, IRModule], |
| expect: Optional[Union[relax.Function, IRModule]], |
| ): |
| test = parsed.script(show_meta=True) |
| roundtrip_mod = tvm.script.from_source(test) |
| tvm.ir.assert_structural_equal(parsed, roundtrip_mod) |
| if expect: |
| tvm.ir.assert_structural_equal(parsed, expect) |
| |
| |
| def test_nll_loss_backward(): |
| @R.function |
| def foo( |
| output_grad: R.Tensor((3, 10, 10), dtype="float32"), |
| predictions: R.Tensor((3, 5, 10, 10), dtype="float32"), |
| targets: R.Tensor((3, 10, 10), dtype="int64"), |
| weights: R.Tensor((5,), dtype="float32"), |
| ) -> R.Tensor((3, 5, 10, 10), dtype="float32"): |
| gv: R.Tensor((3, 5, 10, 10), dtype="float32") = R.grad.nll_loss_backward( |
| output_grad, predictions, targets, weights, "mean", -1 |
| ) |
| return gv |
| |
| output_grad = relax.Var("output_grad", R.Tensor((3, 10, 10), "float32")) |
| predictions = relax.Var("predictions", R.Tensor((3, 5, 10, 10), "float32")) |
| targets = relax.Var("targets", R.Tensor((3, 10, 10), "int64")) |
| weights = relax.Var("weights", R.Tensor((5,), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [output_grad, predictions, targets, weights]): |
| gv = bb.emit( |
| relax.op.grad.nll_loss_backward( |
| output_grad, predictions, targets, weights, reduction="mean", ignore_index=-1 |
| ) |
| ) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_nll_loss_backward_no_weights(): |
| @R.function |
| def foo( |
| output_grad: R.Tensor((3, 10, 10), dtype="float32"), |
| predictions: R.Tensor((3, 5, 10, 10), dtype="float32"), |
| targets: R.Tensor((3, 10, 10), dtype="int64"), |
| ) -> R.Tensor((3, 5, 10, 10), dtype="float32"): |
| gv: R.Tensor((3, 5, 10, 10), dtype="float32") = R.grad.nll_loss_backward( |
| output_grad, predictions, targets, reduction="mean", ignore_index=-1 |
| ) |
| return gv |
| |
| output_grad = relax.Var("output_grad", R.Tensor((3, 10, 10), "float32")) |
| predictions = relax.Var("predictions", R.Tensor((3, 5, 10, 10), "float32")) |
| targets = relax.Var("targets", R.Tensor((3, 10, 10), "int64")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [output_grad, predictions, targets]): |
| gv = bb.emit( |
| relax.op.grad.nll_loss_backward( |
| output_grad, predictions, targets, reduction="mean", ignore_index=-1 |
| ) |
| ) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_max_pool2d_backward(): |
| @R.function |
| def foo( |
| output_grad: R.Tensor((3, 2, 6, 5), "float32"), data: R.Tensor((3, 2, 10, 10), "float32") |
| ): |
| gv = R.grad.max_pool2d_backward( |
| output_grad, data, (5, 5), (2, 2), (2, 1, 2, 1), (1, 1), True |
| ) |
| return gv |
| |
| output_grad = relax.Var("output_grad", R.Tensor((3, 2, 6, 5), "float32")) |
| data = relax.Var("data", R.Tensor((3, 2, 10, 10), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [output_grad, data]): |
| gv = bb.emit( |
| relax.op.grad.max_pool2d_backward( |
| output_grad, data, (5, 5), (2, 2), (2, 1, 2, 1), (1, 1), True |
| ) |
| ) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| def test_avg_pool2d_backward(): |
| @R.function |
| def foo( |
| output_grad: R.Tensor((3, 2, 6, 5), "float32"), data: R.Tensor((3, 2, 10, 10), "float32") |
| ): |
| gv = R.grad.avg_pool2d_backward( |
| output_grad, data, (5, 5), (2, 2), (2, 1, 2, 1), (1, 1), True |
| ) |
| return gv |
| |
| output_grad = relax.Var("output_grad", R.Tensor((3, 2, 6, 5), "float32")) |
| data = relax.Var("data", R.Tensor((3, 2, 10, 10), "float32")) |
| bb = relax.BlockBuilder() |
| with bb.function("foo", [output_grad, data]): |
| gv = bb.emit( |
| relax.op.grad.avg_pool2d_backward( |
| output_grad, data, (5, 5), (2, 2), (2, 1, 2, 1), (1, 1), True |
| ) |
| ) |
| bb.emit_func_output(gv) |
| |
| _check(foo, bb.get()["foo"]) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |