blob: 6680580fe063bf2938f744b799dac1c617a52e4f [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import inspect
from typing import Optional
import pytest
import tvm.testing
from tvm import relax
from tvm.script import ir as I, relax as R
class Base:
def test_compare(self):
transform = relax.transform.UpdateParamStructInfo(self.update_sinfo)
if inspect.isclass(self.Expected) and issubclass(self.Expected, Exception):
with pytest.raises(self.Expected):
transform(self.Before)
else:
after = transform(self.Before)
tvm.ir.assert_structural_equal(self.Expected, after)
def update_sinfo(self, var: relax.Var) -> Optional[relax.StructInfo]:
"""The struct info update function provided to the transform"""
raise NotImplementedError("Should be implemented in derived class")
class TestSimple(Base):
def update_sinfo(self, var: relax.Var) -> Optional[relax.StructInfo]:
if var.name_hint == "weight":
return relax.TensorStructInfo([64, 16], "float32")
@I.ir_module
class Before:
@R.function
def main(
x: R.Tensor([16], "float32"),
weight: R.Tensor([32, 16], "float32"),
) -> R.Tensor([32], "float32"):
out: R.Tensor([32], "float32") = R.matmul(weight, x)
return out
@I.ir_module
class Expected:
@R.function
def main(
x: R.Tensor([16], "float32"),
weight: R.Tensor([64, 16], "float32"),
) -> R.Tensor([64], "float32"):
out: R.Tensor([64], "float32") = R.matmul(weight, x)
return out
if __name__ == "__main__":
tvm.testing.main()