| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| from typing import Callable |
| |
| import pytest |
| import tvm |
| from tvm import topi |
| import tvm.testing |
| from tvm.relax.transform import LegalizeOps |
| import tvm.script |
| from tvm.script import ir as I |
| from tvm.script import relax as R |
| from tvm.script import tir as T |
| |
| |
| def _test_static_shape(name: str, relax_op: Callable, te_func: Callable, dtype: str): |
| @tvm.script.ir_module |
| class Before: |
| @R.function |
| def main(x: R.Tensor((2, 3), dtype)): |
| nonlocal dtype |
| gv = relax_op(x) |
| return gv |
| |
| @tvm.script.ir_module |
| class Expected: |
| @R.function |
| def main(x: R.Tensor((2, 3), dtype)): |
| nonlocal dtype |
| gv = R.emit_te(te_func, x, primfunc_name_hint=f"tir_{name}") |
| return gv |
| |
| mod = LegalizeOps()(Before) |
| tvm.ir.assert_structural_equal(mod, Expected) |
| |
| |
| def _test_symbolic_shape(name: str, relax_op: Callable, te_func: Callable, dtype: str): |
| @tvm.script.ir_module |
| class Before: |
| @R.function |
| def main(x: R.Tensor(("m", "n"), dtype)): |
| nonlocal dtype |
| gv = relax_op(x) |
| return gv |
| |
| @tvm.script.ir_module |
| class Expected: |
| @R.function |
| def main(x: R.Tensor(("m", "n"), dtype)): |
| nonlocal dtype |
| gv = R.emit_te(te_func, x, primfunc_name_hint=f"tir_{name}") |
| return gv |
| |
| mod = LegalizeOps()(Before) |
| tvm.ir.assert_structural_equal(mod, Expected) |
| |
| |
| @pytest.mark.parametrize( |
| "name, relax_op, te_func, dtype", |
| [ |
| ("abs", R.abs, topi.abs, "float32"), |
| ("acos", R.acos, topi.acos, "float32"), |
| ("acosh", R.acosh, topi.acosh, "float32"), |
| ("asin", R.asin, topi.asin, "float32"), |
| ("asinh", R.asinh, topi.asinh, "float32"), |
| ("atan", R.atan, topi.atan, "float32"), |
| ("atanh", R.atanh, topi.atanh, "float32"), |
| ("ceil", R.ceil, topi.ceil, "float32"), |
| ("ceil", R.ceil, topi.identity, "int32"), |
| ("cos", R.cos, topi.cos, "float32"), |
| ("cosh", R.cosh, topi.cosh, "float32"), |
| ("exp", R.exp, topi.exp, "float32"), |
| ("floor", R.floor, topi.floor, "float32"), |
| ("floor", R.floor, topi.identity, "int32"), |
| ("log", R.log, topi.log, "float32"), |
| ("negative", R.negative, topi.negative, "float32"), |
| ("round", R.round, topi.round, "float32"), |
| ("round", R.round, topi.identity, "int32"), |
| ("rsqrt", R.rsqrt, topi.rsqrt, "float32"), |
| ("sigmoid", R.sigmoid, topi.sigmoid, "float32"), |
| ("sign", R.sign, topi.sign, "float32"), |
| ("sign", R.sign, topi.sign, "int32"), |
| ("sin", R.sin, topi.sin, "float32"), |
| ("sinh", R.sinh, topi.sinh, "float32"), |
| ("sqrt", R.sqrt, topi.sqrt, "float32"), |
| ("square", R.square, lambda x: topi.multiply(x, x), "float32"), |
| ("tan", R.tan, topi.tan, "float32"), |
| ("tanh", R.tanh, topi.tanh, "float32"), |
| ("clip", lambda x: R.clip(x, 5, 8), lambda x: topi.clip(x, 5, 8), "float32"), |
| ], |
| ) |
| def test_unary_ops(name: str, relax_op: Callable, te_func: Callable, dtype: str): |
| _test_static_shape(name, relax_op, te_func, dtype) |
| _test_symbolic_shape(name, relax_op, te_func, dtype) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |