| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import inspect |
| |
| import pytest |
| |
| import tvm.testing |
| from tvm import relax |
| from tvm.script import ir as I, relax as R |
| |
| |
| class Base: |
| def test_compare(self): |
| transform = relax.transform.ExpandMatmulOfSum() |
| |
| if inspect.isclass(self.Expected) and issubclass(self.Expected, Exception): |
| with pytest.raises(self.Expected): |
| transform(self.Before) |
| else: |
| after = transform(self.Before) |
| tvm.ir.assert_structural_equal(self.Expected, after) |
| |
| |
| class TestSimple(Base): |
| @I.ir_module |
| class Before: |
| @R.function |
| def main( |
| x: R.Tensor([16], "float32"), |
| A: R.Tensor([16, 32], "float32"), |
| B: R.Tensor([16, 32], "float32"), |
| ) -> R.Tensor([32], "float32"): |
| weight = R.add(A, B) |
| out = R.matmul(x, weight) |
| return out |
| |
| @I.ir_module |
| class Expected: |
| @R.function |
| def main( |
| x: R.Tensor([16], "float32"), |
| A: R.Tensor([16, 32], "float32"), |
| B: R.Tensor([16, 32], "float32"), |
| ) -> R.Tensor([32], "float32"): |
| lhs = R.matmul(x, A) |
| rhs = R.matmul(x, B) |
| out = R.add(lhs, rhs) |
| return out |
| |
| |
| class TestNoExpansionOfCompileTimeAddition(Base): |
| """Do not expand compile-time parameters |
| |
| This expansion is primarily to prepare the function for a later |
| use of `CombineParallelMatmul`. If the addition can be performed |
| at compile-time, this is preferable. |
| """ |
| |
| @I.ir_module |
| class Before: |
| @R.function |
| def main( |
| x: R.Tensor([16], "float32"), |
| A: R.Tensor([16, 32], "float32"), |
| B: R.Tensor([16, 32], "float32"), |
| ) -> R.Tensor([32], "float32"): |
| R.func_attr({"num_input": 1}) |
| weight = R.add(A, B) |
| out = R.matmul(x, weight) |
| return out |
| |
| Expected = Before |
| |
| |
| class TestExpansionOfRuntimeAddition(Base): |
| """Expand runtime addition |
| |
| This expansion is primarily to prepare the function for a later |
| use of `CombineParallelMatmul`. The expansion to `x*A + x*B` |
| should occur iff `A+B` is not computable at compile-time. |
| """ |
| |
| @I.ir_module |
| class Before: |
| @R.function |
| def main( |
| x: R.Tensor([16], "float32"), |
| A: R.Tensor([16, 32], "float32"), |
| B: R.Tensor([16, 32], "float32"), |
| ) -> R.Tensor([32], "float32"): |
| R.func_attr({"num_input": 2}) |
| weight = R.add(A, B) |
| out = R.matmul(x, weight) |
| return out |
| |
| @I.ir_module |
| class Expected: |
| @R.function |
| def main( |
| x: R.Tensor([16], "float32"), |
| A: R.Tensor([16, 32], "float32"), |
| B: R.Tensor([16, 32], "float32"), |
| ) -> R.Tensor([32], "float32"): |
| R.func_attr({"num_input": 2}) |
| lhs = R.matmul(x, A) |
| rhs = R.matmul(x, B) |
| out = R.add(lhs, rhs) |
| return out |
| |
| |
| class TestRHSPermuteDims(Base): |
| @I.ir_module |
| class Before: |
| @R.function |
| def main( |
| x: R.Tensor([16], "float32"), |
| A: R.Tensor([32, 16], "float32"), |
| B: R.Tensor([32, 16], "float32"), |
| ) -> R.Tensor([32], "float32"): |
| linear_weight = R.add(A, B) |
| matmul_weight = R.permute_dims(linear_weight) |
| out = R.matmul(x, matmul_weight) |
| return out |
| |
| @I.ir_module |
| class Expected: |
| @R.function |
| def main( |
| x: R.Tensor([16], "float32"), |
| A: R.Tensor([32, 16], "float32"), |
| B: R.Tensor([32, 16], "float32"), |
| ) -> R.Tensor([32], "float32"): |
| A_transpose = R.permute_dims(A) |
| lhs = R.matmul(x, A_transpose) |
| B_transpose = R.permute_dims(B) |
| rhs = R.matmul(x, B_transpose) |
| out = R.add(lhs, rhs) |
| return out |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |