blob: 6bbf13ef36eb0922b4c3761e299c6f035e2bb83d [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import tvm
import tvm.testing
from tvm.script import ir as I, relax as R, tir as T
import numpy as np
axis = tvm.testing.parameter(0, 1)
@tvm.testing.parametrize_targets("llvm")
def test_take_scalar_tensor_as_index(target, dev, axis):
"""The index of R.take may be a scalar tensor
Using a scalar tensor as the index reduces the dimension of the
output.
"""
@I.ir_module
class Module:
@R.function
def main(A: R.Tensor([16, 16], "float16")):
output = R.take(A, R.const(1), axis=axis)
return output
built = tvm.compile(Module, target=target)
vm = tvm.relax.VirtualMachine(built, dev)
np_input = np.random.random(size=[16, 16]).astype("float16")
tvm_input = tvm.runtime.tensor(np_input, dev)
tvm_output = vm["main"](tvm_input)
np_expected = np_input.take(1, axis=axis)
tvm.testing.assert_allclose(tvm_output.numpy(), np_expected)
@tvm.testing.parametrize_targets("llvm")
def test_take_1d_tensor_as_index(target, dev, axis):
"""The index of R.take may be a non-scalar tensor
In general, `R.take` outputs a tensor of dimension
`data.ndim + indices.ndim - 1`.
"""
@I.ir_module
class Module:
@R.function
def main(A: R.Tensor([16, 16], "float16")):
output = R.take(A, R.const([1]), axis=axis)
return output
built = tvm.compile(Module, target=target)
vm = tvm.relax.VirtualMachine(built, dev)
np_input = np.random.random(size=[16, 16]).astype("float16")
tvm_input = tvm.runtime.tensor(np_input, dev)
tvm_output = vm["main"](tvm_input)
np_expected = np_input.take([1], axis=axis)
tvm.testing.assert_allclose(tvm_output.numpy(), np_expected)
@tvm.testing.parametrize_targets("llvm")
def test_take_2d_tensor_as_index(target, dev, axis):
"""The index of R.take may be a 2-d tensor"""
@I.ir_module
class Module:
@R.function
def main(A: R.Tensor([16, 16], "float16")):
output = R.take(A, R.const([[1, 3], [5, 7]]), axis=axis)
return output
built = tvm.compile(Module, target=target)
vm = tvm.relax.VirtualMachine(built, dev)
np_input = np.random.random(size=[16, 16]).astype("float16")
tvm_input = tvm.runtime.tensor(np_input, dev)
tvm_output = vm["main"](tvm_input)
np_expected = np_input.take([[1, 3], [5, 7]], axis=axis)
tvm.testing.assert_allclose(tvm_output.numpy(), np_expected)
@tvm.testing.parametrize_targets("llvm")
def test_take_constant_prim_value_as_index(target, dev, axis):
"""The index of R.take may be a R.prim_value
The `R.prim_value` produces output equivalent to a scalar
tensor.
"""
@I.ir_module
class Module:
@R.function
def main(A: R.Tensor([16, 16], "float16")):
output = R.take(A, R.prim_value(1), axis=axis)
return output
built = tvm.compile(Module, target=target)
vm = tvm.relax.VirtualMachine(built, dev)
np_input = np.random.random(size=[16, 16]).astype("float16")
tvm_input = tvm.runtime.tensor(np_input, dev)
tvm_output = vm["main"](tvm_input)
np_expected = np_input.take(1, axis=axis)
tvm.testing.assert_allclose(tvm_output.numpy(), np_expected)
@tvm.testing.parametrize_targets("llvm")
def test_take_dynamic_prim_value_as_index(target, dev, axis):
"""The index of R.take may be a dynamic R.prim_value
The `R.prim_value` produces output equivalent to a scalar
tensor.
"""
@I.ir_module
class Module:
@R.function
def main(A: R.Tensor(["n", "n"], "float16")):
n = T.int64()
output = R.take(A, R.prim_value(n - 1), axis=axis)
return output
built = tvm.compile(Module, target=target)
vm = tvm.relax.VirtualMachine(built, dev)
np_input = np.random.random(size=[16, 16]).astype("float16")
tvm_input = tvm.runtime.tensor(np_input, dev)
tvm_output = vm["main"](tvm_input)
np_expected = np_input.take(15, axis=axis)
tvm.testing.assert_allclose(tvm_output.numpy(), np_expected)
@tvm.testing.parametrize_targets("llvm")
def test_take_nan_mode_OOB_indices(target, dev, axis):
"""Test R.take with mode="nan" and out-of-bounds indices.
This test checks that out-of-bounds indices produce NaN values in the output tensor.
"""
@I.ir_module
class Module:
@R.function
def main(A: R.Tensor([3, 3], "float16")):
output = R.take(A, R.const([0, 1, 2, 3]), axis=axis, mode="nan")
return output
built = tvm.compile(Module, target=target)
vm = tvm.relax.VirtualMachine(built, dev)
np_input = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype="float16")
tvm_input = tvm.runtime.tensor(np_input, dev)
tvm_output = vm["main"](tvm_input)
if axis == 0:
np_expected = np.array(
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [np.nan, np.nan, np.nan]],
dtype="float16",
)
elif axis == 1:
np_expected = np.array(
[[1.0, 2.0, 3.0, np.nan], [4.0, 5.0, 6.0, np.nan], [7.0, 8.0, 9.0, np.nan]],
dtype="float16",
)
tvm.testing.assert_allclose(tvm_output.numpy(), np_expected)
@tvm.testing.parametrize_targets("llvm")
def test_take_wrap_mode_OOB_indices(target, dev, axis):
"""Test R.take with mode="wrap" and out-of-bounds indices.
This test checks that out-of-bounds indices wrap around to the valid range.
"""
@I.ir_module
class Module:
@R.function
def main(A: R.Tensor([3, 3], "float16")):
output = R.take(A, R.const([0, 1, 2, 3]), axis=axis, mode="wrap")
return output
built = tvm.compile(Module, target=target)
vm = tvm.relax.VirtualMachine(built, dev)
np_input = np.random.random(size=[3, 3]).astype("float16")
tvm_input = tvm.runtime.tensor(np_input, dev)
tvm_output = vm["main"](tvm_input)
np_expected = np.take(np_input, [0, 1, 2, 3], axis=axis, mode="wrap")
tvm.testing.assert_allclose(tvm_output.numpy(), np_expected)
@tvm.testing.parametrize_targets("llvm")
def test_take_clip_mode_OOB_indices(target, dev, axis):
"""Test R.take with mode="clip" and out-of-bounds indices.
This test checks that out-of-bounds indices are clipped to the valid range.
"""
@I.ir_module
class Module:
@R.function
def main(A: R.Tensor([3, 3], "float16")):
output = R.take(A, R.const([0, 1, 2, 3]), axis=axis, mode="clip")
return output
built = tvm.compile(Module, target=target)
vm = tvm.relax.VirtualMachine(built, dev)
np_input = np.random.random(size=[3, 3]).astype("float16")
tvm_input = tvm.runtime.tensor(np_input, dev)
tvm_output = vm["main"](tvm_input)
np_expected = np.take(np_input, [0, 1, 2, 3], axis=axis, mode="clip")
tvm.testing.assert_allclose(tvm_output.numpy(), np_expected)
if __name__ == "__main__":
tvm.testing.main()