| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import tvm |
| import tvm.testing |
| from tvm.script import ir as I, relax as R, tir as T |
| |
| import numpy as np |
| |
| axis = tvm.testing.parameter(0, 1) |
| |
| |
| @tvm.testing.parametrize_targets("llvm") |
| def test_take_scalar_tensor_as_index(target, dev, axis): |
| """The index of R.take may be a scalar tensor |
| |
| Using a scalar tensor as the index reduces the dimension of the |
| output. |
| |
| """ |
| |
| @I.ir_module |
| class Module: |
| @R.function |
| def main(A: R.Tensor([16, 16], "float16")): |
| output = R.take(A, R.const(1), axis=axis) |
| return output |
| |
| built = tvm.compile(Module, target=target) |
| vm = tvm.relax.VirtualMachine(built, dev) |
| |
| np_input = np.random.random(size=[16, 16]).astype("float16") |
| tvm_input = tvm.runtime.tensor(np_input, dev) |
| tvm_output = vm["main"](tvm_input) |
| np_expected = np_input.take(1, axis=axis) |
| |
| tvm.testing.assert_allclose(tvm_output.numpy(), np_expected) |
| |
| |
| @tvm.testing.parametrize_targets("llvm") |
| def test_take_1d_tensor_as_index(target, dev, axis): |
| """The index of R.take may be a non-scalar tensor |
| |
| In general, `R.take` outputs a tensor of dimension |
| `data.ndim + indices.ndim - 1`. |
| """ |
| |
| @I.ir_module |
| class Module: |
| @R.function |
| def main(A: R.Tensor([16, 16], "float16")): |
| output = R.take(A, R.const([1]), axis=axis) |
| return output |
| |
| built = tvm.compile(Module, target=target) |
| vm = tvm.relax.VirtualMachine(built, dev) |
| |
| np_input = np.random.random(size=[16, 16]).astype("float16") |
| tvm_input = tvm.runtime.tensor(np_input, dev) |
| tvm_output = vm["main"](tvm_input) |
| np_expected = np_input.take([1], axis=axis) |
| |
| tvm.testing.assert_allclose(tvm_output.numpy(), np_expected) |
| |
| |
| @tvm.testing.parametrize_targets("llvm") |
| def test_take_2d_tensor_as_index(target, dev, axis): |
| """The index of R.take may be a 2-d tensor""" |
| |
| @I.ir_module |
| class Module: |
| @R.function |
| def main(A: R.Tensor([16, 16], "float16")): |
| output = R.take(A, R.const([[1, 3], [5, 7]]), axis=axis) |
| return output |
| |
| built = tvm.compile(Module, target=target) |
| vm = tvm.relax.VirtualMachine(built, dev) |
| |
| np_input = np.random.random(size=[16, 16]).astype("float16") |
| tvm_input = tvm.runtime.tensor(np_input, dev) |
| tvm_output = vm["main"](tvm_input) |
| np_expected = np_input.take([[1, 3], [5, 7]], axis=axis) |
| |
| tvm.testing.assert_allclose(tvm_output.numpy(), np_expected) |
| |
| |
| @tvm.testing.parametrize_targets("llvm") |
| def test_take_constant_prim_value_as_index(target, dev, axis): |
| """The index of R.take may be a R.prim_value |
| |
| The `R.prim_value` produces output equivalent to a scalar |
| tensor. |
| |
| """ |
| |
| @I.ir_module |
| class Module: |
| @R.function |
| def main(A: R.Tensor([16, 16], "float16")): |
| output = R.take(A, R.prim_value(1), axis=axis) |
| return output |
| |
| built = tvm.compile(Module, target=target) |
| vm = tvm.relax.VirtualMachine(built, dev) |
| |
| np_input = np.random.random(size=[16, 16]).astype("float16") |
| tvm_input = tvm.runtime.tensor(np_input, dev) |
| tvm_output = vm["main"](tvm_input) |
| np_expected = np_input.take(1, axis=axis) |
| |
| tvm.testing.assert_allclose(tvm_output.numpy(), np_expected) |
| |
| |
| @tvm.testing.parametrize_targets("llvm") |
| def test_take_dynamic_prim_value_as_index(target, dev, axis): |
| """The index of R.take may be a dynamic R.prim_value |
| |
| The `R.prim_value` produces output equivalent to a scalar |
| tensor. |
| |
| """ |
| |
| @I.ir_module |
| class Module: |
| @R.function |
| def main(A: R.Tensor(["n", "n"], "float16")): |
| n = T.int64() |
| output = R.take(A, R.prim_value(n - 1), axis=axis) |
| return output |
| |
| built = tvm.compile(Module, target=target) |
| vm = tvm.relax.VirtualMachine(built, dev) |
| |
| np_input = np.random.random(size=[16, 16]).astype("float16") |
| tvm_input = tvm.runtime.tensor(np_input, dev) |
| tvm_output = vm["main"](tvm_input) |
| np_expected = np_input.take(15, axis=axis) |
| |
| tvm.testing.assert_allclose(tvm_output.numpy(), np_expected) |
| |
| |
| @tvm.testing.parametrize_targets("llvm") |
| def test_take_nan_mode_OOB_indices(target, dev, axis): |
| """Test R.take with mode="nan" and out-of-bounds indices. |
| This test checks that out-of-bounds indices produce NaN values in the output tensor. |
| """ |
| |
| @I.ir_module |
| class Module: |
| @R.function |
| def main(A: R.Tensor([3, 3], "float16")): |
| output = R.take(A, R.const([0, 1, 2, 3]), axis=axis, mode="nan") |
| return output |
| |
| built = tvm.compile(Module, target=target) |
| vm = tvm.relax.VirtualMachine(built, dev) |
| |
| np_input = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype="float16") |
| tvm_input = tvm.runtime.tensor(np_input, dev) |
| tvm_output = vm["main"](tvm_input) |
| if axis == 0: |
| np_expected = np.array( |
| [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0], [np.nan, np.nan, np.nan]], |
| dtype="float16", |
| ) |
| elif axis == 1: |
| np_expected = np.array( |
| [[1.0, 2.0, 3.0, np.nan], [4.0, 5.0, 6.0, np.nan], [7.0, 8.0, 9.0, np.nan]], |
| dtype="float16", |
| ) |
| |
| tvm.testing.assert_allclose(tvm_output.numpy(), np_expected) |
| |
| |
| @tvm.testing.parametrize_targets("llvm") |
| def test_take_wrap_mode_OOB_indices(target, dev, axis): |
| """Test R.take with mode="wrap" and out-of-bounds indices. |
| This test checks that out-of-bounds indices wrap around to the valid range. |
| """ |
| |
| @I.ir_module |
| class Module: |
| @R.function |
| def main(A: R.Tensor([3, 3], "float16")): |
| output = R.take(A, R.const([0, 1, 2, 3]), axis=axis, mode="wrap") |
| return output |
| |
| built = tvm.compile(Module, target=target) |
| vm = tvm.relax.VirtualMachine(built, dev) |
| |
| np_input = np.random.random(size=[3, 3]).astype("float16") |
| tvm_input = tvm.runtime.tensor(np_input, dev) |
| tvm_output = vm["main"](tvm_input) |
| np_expected = np.take(np_input, [0, 1, 2, 3], axis=axis, mode="wrap") |
| |
| tvm.testing.assert_allclose(tvm_output.numpy(), np_expected) |
| |
| |
| @tvm.testing.parametrize_targets("llvm") |
| def test_take_clip_mode_OOB_indices(target, dev, axis): |
| """Test R.take with mode="clip" and out-of-bounds indices. |
| This test checks that out-of-bounds indices are clipped to the valid range. |
| """ |
| |
| @I.ir_module |
| class Module: |
| @R.function |
| def main(A: R.Tensor([3, 3], "float16")): |
| output = R.take(A, R.const([0, 1, 2, 3]), axis=axis, mode="clip") |
| return output |
| |
| built = tvm.compile(Module, target=target) |
| vm = tvm.relax.VirtualMachine(built, dev) |
| np_input = np.random.random(size=[3, 3]).astype("float16") |
| tvm_input = tvm.runtime.tensor(np_input, dev) |
| tvm_output = vm["main"](tvm_input) |
| np_expected = np.take(np_input, [0, 1, 2, 3], axis=axis, mode="clip") |
| |
| tvm.testing.assert_allclose(tvm_output.numpy(), np_expected) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |