| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| from typing import Callable |
| import pytest |
| import tvm |
| import tvm.testing |
| from tvm import relax, tir |
| from tvm import TVMError |
| from tvm.ir import Op, VDevice |
| from tvm.script import relax as R |
| |
| |
| def test_op_correctness(): |
| x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32")) |
| assert relax.op.max(x).op == Op.get("relax.max") |
| assert relax.op.mean(x).op == Op.get("relax.mean") |
| assert relax.op.min(x).op == Op.get("relax.min") |
| assert relax.op.prod(x).op == Op.get("relax.prod") |
| assert relax.op.std(x).op == Op.get("relax.std") |
| assert relax.op.sum(x).op == Op.get("relax.sum") |
| assert relax.op.variance(x).op == Op.get("relax.variance") |
| |
| |
| def _check_inference(bb: relax.BlockBuilder, call: relax.Call, expected_sinfo: relax.StructInfo): |
| ret = bb.normalize(call) |
| tvm.ir.assert_structural_equal(ret.struct_info, expected_sinfo) |
| |
| |
| def test_statistical_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=4)) |
| x2 = relax.Var("x", R.Tensor("float32")) |
| x3 = relax.Var("x", R.Tensor((2, 3, 4, 5))) |
| x4 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32", vdev0)) |
| |
| _check_inference(bb, relax.op.sum(x0, axis=[1, 2]), relax.TensorStructInfo((2, 5), "float32")) |
| _check_inference( |
| bb, relax.op.sum(x4, axis=[1, 2]), relax.TensorStructInfo((2, 5), "float32", vdev0) |
| ) |
| _check_inference( |
| bb, |
| relax.op.sum(x0, axis=[1, 2], keepdims=True), |
| relax.TensorStructInfo((2, 1, 1, 5), "float32"), |
| ) |
| _check_inference(bb, relax.op.sum(x0, axis=None), relax.TensorStructInfo((), "float32")) |
| _check_inference( |
| bb, |
| relax.op.sum(x0, axis=None, keepdims=True), |
| relax.TensorStructInfo((1, 1, 1, 1), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.mean(x1, axis=[1, 2]), relax.TensorStructInfo(dtype="float32", ndim=2) |
| ) |
| _check_inference( |
| bb, |
| relax.op.mean(x1, axis=[1, 2], keepdims=True), |
| relax.TensorStructInfo(dtype="float32", ndim=4), |
| ) |
| _check_inference(bb, relax.op.mean(x1, axis=None), relax.TensorStructInfo((), "float32")) |
| _check_inference( |
| bb, |
| relax.op.mean(x1, axis=None, keepdims=True), |
| relax.TensorStructInfo((1, 1, 1, 1), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.variance(x2, axis=[1, 2]), relax.TensorStructInfo(dtype="float32") |
| ) |
| _check_inference( |
| bb, |
| relax.op.variance(x2, axis=[1, 2], keepdims=True), |
| relax.TensorStructInfo(dtype="float32"), |
| ) |
| _check_inference(bb, relax.op.variance(x2, axis=None), relax.TensorStructInfo((), "float32")) |
| _check_inference( |
| bb, |
| relax.op.variance(x2, axis=None, keepdims=True), |
| relax.TensorStructInfo(dtype="float32"), |
| ) |
| _check_inference(bb, relax.op.max(x3, axis=[1, 2]), relax.TensorStructInfo((2, 5), dtype="")) |
| _check_inference( |
| bb, |
| relax.op.max(x3, axis=[1, 2], keepdims=True), |
| relax.TensorStructInfo((2, 1, 1, 5), dtype=""), |
| ) |
| _check_inference(bb, relax.op.max(x3, axis=None), relax.TensorStructInfo((), dtype="")) |
| _check_inference( |
| bb, |
| relax.op.max(x3, axis=None, keepdims=True), |
| relax.TensorStructInfo((1, 1, 1, 1), dtype=""), |
| ) |
| _check_inference(bb, relax.op.prod(x0, axis=[1, 2]), relax.TensorStructInfo((2, 5), "float32")) |
| _check_inference( |
| bb, |
| relax.op.prod(x0, axis=[1, 2], keepdims=True), |
| relax.TensorStructInfo((2, 1, 1, 5), "float32"), |
| ) |
| _check_inference(bb, relax.op.std(x0, axis=[1, 2]), relax.TensorStructInfo((2, 5), "float32")) |
| _check_inference( |
| bb, |
| relax.op.std(x0, axis=[1, 2], keepdims=True), |
| relax.TensorStructInfo((2, 1, 1, 5), "float32"), |
| ) |
| _check_inference(bb, relax.op.sum(x0, axis=[-1, -4]), relax.TensorStructInfo((3, 4), "float32")) |
| _check_inference(bb, relax.op.sum(x0, axis=[]), relax.TensorStructInfo((2, 3, 4, 5), "float32")) |
| |
| |
| def test_statistical_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| a = tir.Var("a", "int64") |
| b = tir.Var("b", "int64") |
| c = tir.Var("c", "int64") |
| d = tir.Var("d", "int64") |
| x = relax.Var("x", R.Tensor((a, b, c, d), "float32")) |
| |
| _check_inference(bb, relax.op.min(x, axis=[1, 2]), relax.TensorStructInfo((a, d), "float32")) |
| _check_inference( |
| bb, |
| relax.op.min(x, axis=[1, 2], keepdims=True), |
| relax.TensorStructInfo((a, 1, 1, d), "float32"), |
| ) |
| _check_inference(bb, relax.op.min(x, axis=None), relax.TensorStructInfo((), "float32")) |
| _check_inference( |
| bb, |
| relax.op.min(x, axis=None, keepdims=True), |
| relax.TensorStructInfo((1, 1, 1, 1), "float32"), |
| ) |
| |
| |
| def test_statistical_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=4)) |
| s1 = relax.Var("s", relax.ShapeStructInfo()) |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| |
| _check_inference(bb, relax.op.max(x0), relax.TensorStructInfo((), dtype="float32")) |
| _check_inference( |
| bb, relax.op.max(x0, keepdims=True), relax.TensorStructInfo((1, 1, 1, 1), dtype="float32") |
| ) |
| _check_inference( |
| bb, relax.op.max(x0, axis=[2, 3]), relax.TensorStructInfo(dtype="float32", ndim=2) |
| ) |
| _check_inference( |
| bb, |
| relax.op.max(x0, axis=[2, 3], keepdims=True), |
| relax.TensorStructInfo(dtype="float32", ndim=4), |
| ) |
| _check_inference(bb, relax.op.max(x1), relax.TensorStructInfo((), dtype="float32")) |
| _check_inference(bb, relax.op.max(x1, keepdims=True), relax.TensorStructInfo(dtype="float32")) |
| _check_inference(bb, relax.op.max(x1, axis=[2, 3]), relax.TensorStructInfo(dtype="float32")) |
| _check_inference( |
| bb, relax.op.max(x1, axis=[2, 3], keepdims=True), relax.TensorStructInfo(dtype="float32") |
| ) |
| |
| |
| def test_statistical_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 4, 5), "int8")) |
| |
| _check_inference(bb, relax.op.sum(x0), relax.TensorStructInfo((), "float16")) |
| _check_inference(bb, relax.op.sum(x1), relax.TensorStructInfo((), "int8")) |
| |
| |
| def test_statistical_infer_struct_info_axis_out_of_range_repetitive(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=4)) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.mean(x0, axis=[4])) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.mean(x1, axis=[3, 3])) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.mean(x0, axis=[-1, 3])) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.mean(x1, axis=[-4, -4])) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.mean(x0, axis=[-5])) |
| |
| |
| def test_statistical_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 4, 5))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 4, 5), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.variance(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.variance(x1)) |
| |
| |
| (scan_op,) = tvm.testing.parameters( |
| (relax.op.cumprod,), |
| (relax.op.cumsum,), |
| ) |
| |
| |
| def test_scan_op_infer_struct_info(scan_op: Callable): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| x0 = relax.Var("x", R.Tensor((2, 10, 4), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=3)) |
| x2 = relax.Var("x", R.Tensor("float32")) |
| x3 = relax.Var("x", R.Tensor((2, 10, 4))) |
| x4 = relax.Var("x", R.Tensor(ndim=3)) |
| x5 = relax.Var("x", R.Tensor()) |
| x6 = relax.Var("x", R.Tensor((2, 10, 4), "float32", vdev0)) |
| |
| _check_inference(bb, scan_op(x0, axis=1), relax.TensorStructInfo((2, 10, 4), "float32")) |
| _check_inference(bb, scan_op(x6, axis=1), relax.TensorStructInfo((2, 10, 4), "float32", vdev0)) |
| _check_inference(bb, scan_op(x1, axis=1), relax.TensorStructInfo(dtype="float32", ndim=3)) |
| _check_inference(bb, scan_op(x2, axis=1), relax.TensorStructInfo(dtype="float32")) |
| _check_inference(bb, scan_op(x3, axis=1), relax.TensorStructInfo((2, 10, 4), dtype="")) |
| _check_inference(bb, scan_op(x4, axis=1), relax.TensorStructInfo(dtype="", ndim=3)) |
| _check_inference(bb, scan_op(x5, axis=1), relax.TensorStructInfo(dtype="")) |
| _check_inference(bb, scan_op(x0), relax.TensorStructInfo((80,), "float32")) |
| _check_inference( |
| bb, scan_op(x0, axis=1, dtype="int32"), relax.TensorStructInfo((2, 10, 4), "int32") |
| ) |
| |
| |
| def test_scan_op_infer_struct_info_shape_symbolic(scan_op: Callable): |
| bb = relax.BlockBuilder() |
| a = tir.Var("a", "int64") |
| b = tir.Var("b", "int64") |
| c = tir.Var("c", "int64") |
| x = relax.Var("x", R.Tensor((a, b, c), "float32")) |
| |
| _check_inference(bb, scan_op(x, axis=1), relax.TensorStructInfo((a, b, c), "float32")) |
| _check_inference(bb, scan_op(x), relax.TensorStructInfo((a * b * c,), "float32")) |
| |
| |
| def test_scan_op_infer_struct_info_more_input_dtype(scan_op: Callable): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 4), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 4), "int8")) |
| |
| _check_inference(bb, scan_op(x0, axis=1), relax.TensorStructInfo((2, 3, 4), "float16")) |
| _check_inference(bb, scan_op(x1, axis=1), relax.TensorStructInfo((2, 3, 4), "int8")) |
| |
| |
| def test_scan_op_wrong_input_number(scan_op: Callable): |
| x = relax.Var("x", R.Tensor((3, 4, 5), "float32")) |
| y = relax.Var("y", R.Tensor((2, 3, 4), "float32")) |
| |
| with pytest.raises(TypeError): |
| scan_op(x, y) |
| |
| |
| def test_scan_opinfer_struct_info_wrong_input_type(scan_op: Callable): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 4, 5))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 4, 5), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(scan_op(x0, axis=1)) |
| with pytest.raises(TVMError): |
| bb.normalize(scan_op(x1, axis=1)) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |