blob: d86bebecd3b322135c42f4dc6b50ca5023e0c439 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
import tvm
import tvm.testing
from tvm import relax, tir
from tvm import TVMError
from tvm.ir import Op, VDevice
from tvm.script import relax as R
def test_op_correctness():
x = relax.Var("x", R.Tensor((3, 4, 5), "float32"))
assert relax.op.sort(x, axis=1).op == Op.get("relax.sort")
assert relax.op.argsort(x, axis=1).op == Op.get("relax.argsort")
assert relax.op.topk(x, k=1, axis=1).op == Op.get("relax.topk")
def _check_inference(bb: relax.BlockBuilder, call: relax.Call, expected_sinfo: relax.StructInfo):
ret = bb.normalize(call)
tvm.ir.assert_structural_equal(ret.struct_info, expected_sinfo)
def test_sort_infer_struct_info():
bb = relax.BlockBuilder()
vdev0 = VDevice("llvm")
x0 = relax.Var("x", R.Tensor((2, 10, 4), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=3))
x2 = relax.Var("x", R.Tensor("float32"))
x3 = relax.Var("x", R.Tensor((2, 10, 4)))
x4 = relax.Var("x", R.Tensor(ndim=3))
x5 = relax.Var("x", R.Tensor())
x6 = relax.Var("x", R.Tensor((2, 10, 4), "float32", vdev0))
_check_inference(bb, relax.op.sort(x0, axis=1), relax.TensorStructInfo((2, 10, 4), "float32"))
_check_inference(
bb, relax.op.sort(x6, axis=1), relax.TensorStructInfo((2, 10, 4), "float32", vdev0)
)
_check_inference(bb, relax.op.sort(x1, axis=1), relax.TensorStructInfo(dtype="float32", ndim=3))
_check_inference(bb, relax.op.sort(x2, axis=1), relax.TensorStructInfo(dtype="float32"))
_check_inference(bb, relax.op.sort(x3, axis=1), relax.TensorStructInfo((2, 10, 4), dtype=""))
_check_inference(bb, relax.op.sort(x4, axis=1), relax.TensorStructInfo(dtype="", ndim=3))
_check_inference(bb, relax.op.sort(x5, axis=1), relax.TensorStructInfo(dtype=""))
_check_inference(bb, relax.op.sort(x0), relax.TensorStructInfo((2, 10, 4), "float32"))
_check_inference(
bb,
relax.op.sort(x0, axis=1, descending=False),
relax.TensorStructInfo((2, 10, 4), "float32"),
)
def test_sort_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
a = tir.Var("a", "int64")
b = tir.Var("b", "int64")
c = tir.Var("c", "int64")
x = relax.Var("x", R.Tensor((a, b, c), "float32"))
_check_inference(bb, relax.op.sort(x, axis=1), relax.TensorStructInfo((a, b, c), "float32"))
_check_inference(bb, relax.op.sort(x), relax.TensorStructInfo((a, b, c), "float32"))
def test_sort_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 4), "float16"))
x1 = relax.Var("x", R.Tensor((2, 3, 4), "int8"))
_check_inference(bb, relax.op.sort(x0, axis=1), relax.TensorStructInfo((2, 3, 4), "float16"))
_check_inference(bb, relax.op.sort(x1, axis=1), relax.TensorStructInfo((2, 3, 4), "int8"))
def test_sort_wrong_input():
bb = relax.BlockBuilder()
x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 4, 5)))
x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 4, 5), "float32")))
x = relax.Var("x", R.Tensor((3, 4, 5), "float32"))
y = relax.Var("y", R.Tensor((2, 3, 4), "float32"))
with pytest.raises(TypeError):
relax.op.sort(x, y)
with pytest.raises(TVMError):
bb.normalize(relax.op.sort(x0, axis=1))
with pytest.raises(TVMError):
bb.normalize(relax.op.sort(x1, axis=1))
def test_argsort_infer_struct_info():
bb = relax.BlockBuilder()
vdev0 = VDevice("llvm")
x0 = relax.Var("x", R.Tensor((2, 10, 4), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=3))
x2 = relax.Var("x", R.Tensor("float32"))
x3 = relax.Var("x", R.Tensor((2, 10, 4)))
x4 = relax.Var("x", R.Tensor(ndim=3))
x5 = relax.Var("x", R.Tensor())
x6 = relax.Var("x", R.Tensor((2, 10, 4), "float32", vdev0))
_check_inference(
bb,
relax.op.argsort(x0, axis=1, descending=False, dtype="int64"),
relax.TensorStructInfo((2, 10, 4), "int64"),
)
_check_inference(
bb, relax.op.argsort(x6, axis=1), relax.TensorStructInfo((2, 10, 4), "int32", vdev0)
)
_check_inference(
bb, relax.op.argsort(x1, axis=1), relax.TensorStructInfo(dtype="int32", ndim=3)
)
_check_inference(
bb, relax.op.argsort(x2, axis=1, dtype="float16"), relax.TensorStructInfo(dtype="float16")
)
_check_inference(
bb, relax.op.argsort(x3, axis=1), relax.TensorStructInfo((2, 10, 4), dtype="int32")
)
_check_inference(
bb, relax.op.argsort(x4, axis=1), relax.TensorStructInfo(dtype="int32", ndim=3)
)
_check_inference(bb, relax.op.argsort(x5, axis=1), relax.TensorStructInfo(dtype="int32"))
_check_inference(bb, relax.op.argsort(x0), relax.TensorStructInfo((2, 10, 4), "int32"))
_check_inference(
bb,
relax.op.argsort(x0, axis=1, descending=False),
relax.TensorStructInfo((2, 10, 4), "int32"),
)
def test_argsort_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
a = tir.Var("a", "int64")
b = tir.Var("b", "int64")
c = tir.Var("c", "int64")
x = relax.Var("x", R.Tensor((a, b, c), "float32"))
_check_inference(bb, relax.op.argsort(x, axis=1), relax.TensorStructInfo((a, b, c), "int32"))
_check_inference(bb, relax.op.argsort(x), relax.TensorStructInfo((a, b, c), "int32"))
def test_topk_infer_struct_info():
bb = relax.BlockBuilder()
vdev0 = VDevice("llvm")
x0 = relax.Var("x", R.Tensor((2, 10, 4), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=3))
x2 = relax.Var("x", R.Tensor("float32"))
x3 = relax.Var("x", R.Tensor((2, 10, 4)))
x4 = relax.Var("x", R.Tensor(ndim=3))
x5 = relax.Var("x", R.Tensor())
x6 = relax.Var("x", R.Tensor((2, 10, 4), "float32", vdev0))
_check_inference(
bb,
relax.op.topk(x0, k=5, axis=1, ret_type="both", largest=False, dtype="int64"),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 5, 4), "float32"),
relax.TensorStructInfo((2, 5, 4), "int64"),
]
),
)
_check_inference(
bb,
relax.op.topk(x6),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 10, 1), "float32", vdev0),
relax.TensorStructInfo((2, 10, 1), "int32", vdev0),
]
),
)
_check_inference(
bb,
relax.op.topk(x1, k=3, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype="float32", ndim=3),
relax.TensorStructInfo(dtype="int32", ndim=3),
]
),
)
_check_inference(
bb,
relax.op.topk(x2),
relax.TupleStructInfo(
[relax.TensorStructInfo(dtype="float32"), relax.TensorStructInfo(dtype="int32")]
),
)
_check_inference(
bb,
relax.op.topk(x3, axis=0),
relax.TupleStructInfo(
[
relax.TensorStructInfo((1, 10, 4), None),
relax.TensorStructInfo((1, 10, 4), dtype="int32"),
]
),
)
_check_inference(
bb,
relax.op.topk(x4, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(ndim=3, dtype=None),
relax.TensorStructInfo(dtype="int32", ndim=3),
]
),
)
_check_inference(
bb,
relax.op.topk(x5, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype=None),
relax.TensorStructInfo(dtype="int32"),
]
),
)
_check_inference(
bb,
relax.op.topk(x0),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 10, 1), "float32"),
relax.TensorStructInfo((2, 10, 1), "int32"),
]
),
)
_check_inference(
bb,
relax.op.topk(x0, k=-1),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 10, 4), "float32"),
relax.TensorStructInfo((2, 10, 4), "int32"),
]
),
)
_check_inference(
bb,
relax.op.topk(x0, k=6),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 10, 4), "float32"),
relax.TensorStructInfo((2, 10, 4), "int32"),
]
),
)
def test_topk_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
a = tir.Var("a", "int64")
b = tir.Var("b", "int64")
c = tir.Var("c", "int64")
x = relax.Var("x", R.Tensor((a, b, c), "float32"))
_check_inference(
bb,
relax.op.topk(x, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo((a, 1, c), "float32"),
relax.TensorStructInfo((a, 1, c), "int32"),
]
),
)
_check_inference(
bb,
relax.op.topk(x, k=3),
relax.TupleStructInfo(
[
relax.TensorStructInfo((a, b, 3), "float32"),
relax.TensorStructInfo((a, b, 3), "int32"),
]
),
)
if __name__ == "__main__":
tvm.testing.main()