| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import pytest |
| import tvm |
| import tvm.testing |
| from tvm import relax, tir |
| from tvm import TVMError |
| from tvm.ir import Op, VDevice |
| from tvm.script import relax as R |
| |
| |
| def test_op_correctness(): |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| x1 = relax.Var("x1", R.Tensor((2, 3, 64), "float32")) |
| x2 = relax.Var("x2", R.Tensor((2, 3, 8, 28, 28), "float32")) |
| assert relax.op.nn.max_pool1d(x1).op == Op.get("relax.nn.max_pool1d") |
| assert relax.op.nn.max_pool2d(x).op == Op.get("relax.nn.max_pool2d") |
| assert relax.op.nn.max_pool3d(x2).op == Op.get("relax.nn.max_pool3d") |
| assert relax.op.nn.avg_pool1d(x).op == Op.get("relax.nn.avg_pool1d") |
| assert relax.op.nn.avg_pool2d(x).op == Op.get("relax.nn.avg_pool2d") |
| assert relax.op.nn.avg_pool3d(x).op == Op.get("relax.nn.avg_pool3d") |
| assert relax.op.nn.adaptive_avg_pool1d(x).op == Op.get("relax.nn.adaptive_avg_pool1d") |
| assert relax.op.nn.adaptive_avg_pool2d(x).op == Op.get("relax.nn.adaptive_avg_pool2d") |
| assert relax.op.nn.adaptive_avg_pool3d(x).op == Op.get("relax.nn.adaptive_avg_pool3d") |
| |
| |
| def _check_inference(bb: relax.BlockBuilder, call: relax.Call, expected_sinfo: relax.StructInfo): |
| ret = bb.normalize(call) |
| tvm.ir.assert_structural_equal(ret.struct_info, expected_sinfo) |
| |
| |
| def test_max_pool1d_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| x0 = relax.Var("x", R.Tensor((2, 3, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=3)) |
| x2 = relax.Var("x", R.Tensor(ndim=3)) |
| x3 = relax.Var("x", R.Tensor("float32")) |
| x4 = relax.Var("x", R.Tensor()) |
| x5 = relax.Var("x", R.Tensor((2, 3, 32), "float32", vdev0)) |
| |
| _check_inference(bb, relax.op.nn.max_pool1d(x0), relax.TensorStructInfo((2, 3, 32), "float32")) |
| _check_inference( |
| bb, relax.op.nn.max_pool1d(x5), relax.TensorStructInfo((2, 3, 32), "float32", vdev0) |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool1d(x0, pool_size=3), relax.TensorStructInfo((2, 3, 30), "float32") |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool1d(x0, strides=2), relax.TensorStructInfo((2, 3, 16), "float32") |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool1d(x0, padding=1), relax.TensorStructInfo((2, 3, 34), "float32") |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool1d(x0, dilation=2), relax.TensorStructInfo((2, 3, 32), "float32") |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool1d(x0, layout="NCW", out_layout="NWC"), |
| relax.TensorStructInfo((2, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool1d(x1), relax.TensorStructInfo(dtype="float32", ndim=3) |
| ) |
| _check_inference(bb, relax.op.nn.max_pool1d(x2), relax.TensorStructInfo(dtype="", ndim=3)) |
| _check_inference( |
| bb, relax.op.nn.max_pool1d(x3), relax.TensorStructInfo(dtype="float32", ndim=3) |
| ) |
| _check_inference(bb, relax.op.nn.max_pool1d(x4), relax.TensorStructInfo(dtype="", ndim=3)) |
| |
| |
| def test_max_pool1d_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| w = tir.Var("w", "int64") |
| c16 = tir.Var("c16", "int64") |
| |
| x0 = relax.Var("x", R.Tensor((n, c, w), "float32")) |
| x1 = relax.Var("x", R.Tensor((n, c, w, c16), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool1d(x0, pool_size=3, strides=3, padding=2, dilation=2), |
| relax.TensorStructInfo( |
| ( |
| n, |
| c, |
| tvm.tir.floordiv(w - 1, 3) + 1, |
| ), |
| "float32", |
| ), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool1d(x1, layout="NCW16c", out_layout="NWC"), |
| relax.TensorStructInfo((n, w, c * 16), "float32"), |
| ) |
| |
| |
| def test_max_pool1d_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=3)) |
| s1 = relax.Var("s", relax.ShapeStructInfo(ndim=4)) |
| s2 = relax.Var("s", relax.ShapeStructInfo()) |
| |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32")) |
| |
| _check_inference( |
| bb, relax.op.nn.max_pool1d(x0), relax.TensorStructInfo(dtype="float32", ndim=3) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool1d(x1, layout="NCW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=4), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool1d(x2), |
| relax.TensorStructInfo(dtype="float32", ndim=3), |
| ) |
| |
| |
| def test_max_pool1d_infer_struct_info_ceil_mode(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 32), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool1d(x, pool_size=3, strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool1d(x, pool_size=5, strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 15), "float32"), |
| ) |
| |
| |
| def test_max_pool1d_infer_struct_info_ceil_mode_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| w = tir.Var("w", "int64") |
| x = relax.Var("x", R.Tensor((n, c, w), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool1d(x, pool_size=3, strides=2, padding=1, dilation=2, ceil_mode=True), |
| relax.TensorStructInfo((n, c, tvm.tir.floordiv(w, 2)), "float32"), |
| ) |
| |
| |
| def test_max_pool1d_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 32), "int8")) |
| x2 = relax.Var("x", R.Tensor((2, 3, 32), "int64")) |
| |
| _check_inference(bb, relax.op.nn.max_pool1d(x0), relax.TensorStructInfo((2, 3, 32), "float16")) |
| _check_inference(bb, relax.op.nn.max_pool1d(x1), relax.TensorStructInfo((2, 3, 32), "int8")) |
| _check_inference(bb, relax.op.nn.max_pool1d(x2), relax.TensorStructInfo((2, 3, 32), "int64")) |
| |
| |
| def test_max_pool1d_stride_padding_dilation_int64(): |
| x = relax.Var("x", R.Tensor((2, 3, 28), "float32")) |
| max_pool1d = relax.op.nn.max_pool1d(x, pool_size=3, strides=1, padding=1, dilation=1) |
| |
| assert max_pool1d.attrs.strides[0].dtype == "int64" |
| assert max_pool1d.attrs.padding[0].dtype == "int64" |
| assert max_pool1d.attrs.padding[1].dtype == "int64" |
| assert max_pool1d.attrs.dilation[0].dtype == "int64" |
| |
| |
| def test_max_pool1d_wrong_pool_size_strides_padding_dilation_length(): |
| x = relax.Var("x", R.Tensor((2, 3, 28), "float32")) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool1d(x, pool_size=(1, 2)) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool1d(x, strides=(1, 2)) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool1d(x, padding=(1, 2, 3)) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool1d(x, dilation=(1, 2)) |
| |
| |
| def test_max_pool1d_infer_struct_info_wrong_layout_string(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 28), "float32")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool1d(x, layout="OIW")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool1d(x, out_layout="OWI")) |
| |
| |
| def test_max_pool1d_wrong_input_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=5)) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool1d(x0)) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool1d(x1)) |
| |
| |
| def test_max_pool1d_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 28))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 28), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool1d(x0)) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool1d(x1)) |
| |
| |
| def test_max_pool2d_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor((2, 32, 32, 3), "float32")) |
| x2 = relax.Var("x", R.Tensor("float32", ndim=4)) |
| x3 = relax.Var("x", R.Tensor("float32")) |
| x4 = relax.Var("x", R.Tensor(ndim=4)) |
| x5 = relax.Var("x", R.Tensor()) |
| x6 = relax.Var("x", R.Tensor((2, 4, 32, 32, 16), "float32")) |
| x7 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32", vdev0)) |
| |
| _check_inference( |
| bb, relax.op.nn.max_pool2d(x0), relax.TensorStructInfo((2, 3, 32, 32), "float32") |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool2d(x7), relax.TensorStructInfo((2, 3, 32, 32), "float32", vdev0) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x0, pool_size=3), |
| relax.TensorStructInfo((2, 3, 30, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x0, pool_size=(5, 3)), |
| relax.TensorStructInfo((2, 3, 28, 30), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool2d(x0, padding=1), relax.TensorStructInfo((2, 3, 34, 34), "float32") |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x0, padding=[1, 2]), |
| relax.TensorStructInfo((2, 3, 34, 36), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x0, strides=2), |
| relax.TensorStructInfo((2, 3, 16, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x0, dilation=2), |
| relax.TensorStructInfo((2, 3, 32, 32), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x1, layout="NHWC"), |
| relax.TensorStructInfo((2, 32, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x0, out_layout="NHWC"), |
| relax.TensorStructInfo((2, 32, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x6, layout="NCHW16c", out_layout="NHWC16c"), |
| relax.TensorStructInfo((2, 32, 32, 4, 16), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool2d(x2), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool2d(x3), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference(bb, relax.op.nn.max_pool2d(x4), relax.TensorStructInfo(dtype="", ndim=4)) |
| _check_inference(bb, relax.op.nn.max_pool2d(x5), relax.TensorStructInfo(dtype="", ndim=4)) |
| |
| |
| def test_max_pool2d_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| c16 = tir.Var("c16", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| x0 = relax.Var("x", R.Tensor((n, c, ih, iw), "float32")) |
| x1 = relax.Var("x", R.Tensor((n, c, ih, iw, c16), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d( |
| x0, pool_size=(3, 3), strides=(3, 3), padding=(2, 2), dilation=(2, 2) |
| ), |
| relax.TensorStructInfo( |
| ( |
| n, |
| c, |
| tvm.tir.floordiv(ih - 1, 3) + 1, |
| tvm.tir.floordiv(iw - 1, 3) + 1, |
| ), |
| "float32", |
| ), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x1, layout="NCHW16c", out_layout="NHWC"), |
| relax.TensorStructInfo((n, ih, iw, c * 16), "float32"), |
| ) |
| |
| |
| def test_max_pool2d_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=4)) |
| s1 = relax.Var("s", relax.ShapeStructInfo(ndim=5)) |
| s2 = relax.Var("s", relax.ShapeStructInfo()) |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32")) |
| |
| _check_inference( |
| bb, relax.op.nn.max_pool2d(x0), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x1, layout="NCHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=5), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x2), |
| relax.TensorStructInfo(dtype="float32", ndim=4), |
| ) |
| |
| |
| def test_max_pool2d_infer_struct_info_ceil_mode(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x, pool_size=3, strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 16, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d(x, pool_size=(5, 3), strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 15, 16), "float32"), |
| ) |
| |
| |
| def test_max_pool2d_infer_struct_info_ceil_mode_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| x = relax.Var("x", R.Tensor((n, c, ih, iw), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool2d( |
| x, pool_size=(3, 3), strides=(2, 2), padding=(1, 1), dilation=(2, 2), ceil_mode=True |
| ), |
| relax.TensorStructInfo((n, c, tvm.tir.floordiv(ih, 2), tvm.tir.floordiv(iw, 2)), "float32"), |
| ) |
| |
| |
| def test_max_pool2d_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 32, 32), "int8")) |
| x2 = relax.Var("x", R.Tensor((2, 3, 32, 32), "int64")) |
| _check_inference( |
| bb, relax.op.nn.max_pool2d(x0), relax.TensorStructInfo((2, 3, 32, 32), "float16") |
| ) |
| _check_inference(bb, relax.op.nn.max_pool2d(x1), relax.TensorStructInfo((2, 3, 32, 32), "int8")) |
| _check_inference( |
| bb, relax.op.nn.max_pool2d(x2), relax.TensorStructInfo((2, 3, 32, 32), "int64") |
| ) |
| |
| |
| def test_max_pool2d_stride_padding_dilation_int64(): |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| max_pool2d = relax.op.nn.max_pool2d(x, (3, 3), strides=(1, 1), padding=(1, 1), dilation=(1, 1)) |
| |
| assert max_pool2d.attrs.strides[0].dtype == "int64" |
| assert max_pool2d.attrs.strides[1].dtype == "int64" |
| assert max_pool2d.attrs.padding[0].dtype == "int64" |
| assert max_pool2d.attrs.padding[1].dtype == "int64" |
| assert max_pool2d.attrs.padding[2].dtype == "int64" |
| assert max_pool2d.attrs.padding[3].dtype == "int64" |
| assert max_pool2d.attrs.dilation[0].dtype == "int64" |
| assert max_pool2d.attrs.dilation[1].dtype == "int64" |
| |
| |
| def test_max_pool2d_wrong_pool_size_strides_padding_dilation_length(): |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool2d(x, pool_size=(1, 2, 3)) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool2d(x, strides=(1, 2, 3)) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool2d(x, padding=(1, 2, 3)) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool2d(x, dilation=(1, 2, 3)) |
| |
| |
| def test_max_pool2d_infer_struct_info_wrong_layout_string(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool2d(x, layout="OIHW")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool2d(x, out_layout="OHWI")) |
| |
| |
| def test_max_pool2d_wrong_input_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 28, 28, 3), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=3)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool2d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool2d(x1)) |
| |
| |
| def test_max_pool2d_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 28, 28))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 28, 28), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool2d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool2d(x1)) |
| |
| |
| def test_max_pool3d_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| x0 = relax.Var("x", R.Tensor((2, 3, 16, 32, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor((2, 16, 32, 32, 3), "float32")) |
| x2 = relax.Var("x", R.Tensor("float32", ndim=5)) |
| x3 = relax.Var("x", R.Tensor("float32")) |
| x4 = relax.Var("x", R.Tensor(ndim=5)) |
| x5 = relax.Var("x", R.Tensor()) |
| x6 = relax.Var("x", R.Tensor((2, 4, 16, 32, 32, 16), "float32")) |
| x7 = relax.Var("x", R.Tensor((2, 3, 16, 32, 32), "float32", vdev0)) |
| |
| _check_inference( |
| bb, relax.op.nn.max_pool3d(x0), relax.TensorStructInfo((2, 3, 16, 32, 32), "float32") |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool3d(x7), relax.TensorStructInfo((2, 3, 16, 32, 32), "float32", vdev0) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x0, pool_size=3), |
| relax.TensorStructInfo((2, 3, 14, 30, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x0, pool_size=(3, 5, 3)), |
| relax.TensorStructInfo((2, 3, 14, 28, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x0, padding=1), |
| relax.TensorStructInfo((2, 3, 18, 34, 34), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x0, padding=[1, 2, 3]), |
| relax.TensorStructInfo((2, 3, 18, 36, 38), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x0, strides=2), |
| relax.TensorStructInfo((2, 3, 8, 16, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x0, dilation=2), |
| relax.TensorStructInfo((2, 3, 16, 32, 32), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x1, layout="NDHWC"), |
| relax.TensorStructInfo((2, 16, 32, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x0, out_layout="NDHWC"), |
| relax.TensorStructInfo((2, 16, 32, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x6, layout="NCDHW16c", out_layout="NDHWC16c"), |
| relax.TensorStructInfo((2, 16, 32, 32, 4, 16), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool3d(x2), relax.TensorStructInfo(dtype="float32", ndim=5) |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool3d(x3), relax.TensorStructInfo(dtype="float32", ndim=5) |
| ) |
| _check_inference(bb, relax.op.nn.max_pool3d(x4), relax.TensorStructInfo(dtype="", ndim=5)) |
| _check_inference(bb, relax.op.nn.max_pool3d(x5), relax.TensorStructInfo(dtype="", ndim=5)) |
| |
| |
| def test_max_pool3d_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| c16 = tir.Var("c16", "int64") |
| id = tir.Var("id", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| x0 = relax.Var("x", R.Tensor((n, c, id, ih, iw), "float32")) |
| x1 = relax.Var("x", R.Tensor((n, c, id, ih, iw, c16), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d( |
| x0, pool_size=(3, 3, 3), strides=(3, 3, 3), padding=(2, 2, 2), dilation=(2, 2, 2) |
| ), |
| relax.TensorStructInfo( |
| ( |
| n, |
| c, |
| tvm.tir.floordiv(id - 1, 3) + 1, |
| tvm.tir.floordiv(ih - 1, 3) + 1, |
| tvm.tir.floordiv(iw - 1, 3) + 1, |
| ), |
| "float32", |
| ), |
| ) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x1, layout="NCDHW16c", out_layout="NDHWC"), |
| relax.TensorStructInfo((n, id, ih, iw, c * 16), "float32"), |
| ) |
| |
| |
| def test_max_pool3d_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=5)) |
| s1 = relax.Var("s", relax.ShapeStructInfo(ndim=6)) |
| s2 = relax.Var("s", relax.ShapeStructInfo()) |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32")) |
| |
| _check_inference( |
| bb, relax.op.nn.max_pool3d(x0), relax.TensorStructInfo(dtype="float32", ndim=5) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x1, layout="NCDHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=6), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x2), |
| relax.TensorStructInfo(dtype="float32", ndim=5), |
| ) |
| |
| |
| def test_max_pool3d_infer_struct_info_ceil_mode(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x, pool_size=3, strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 16, 16, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d(x, pool_size=(5, 3, 3), strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 15, 16, 16), "float32"), |
| ) |
| |
| |
| def test_max_pool3d_infer_struct_info_ceil_mode_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| id_ = tir.Var("id", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| x = relax.Var("x", R.Tensor((n, c, id_, ih, iw), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.max_pool3d( |
| x, |
| pool_size=(3, 3, 3), |
| strides=(2, 2, 2), |
| padding=(1, 1, 1), |
| dilation=(2, 2, 2), |
| ceil_mode=True, |
| ), |
| relax.TensorStructInfo( |
| (n, c, tvm.tir.floordiv(id_, 2), tvm.tir.floordiv(ih, 2), tvm.tir.floordiv(iw, 2)), |
| "float32", |
| ), |
| ) |
| |
| |
| def test_max_pool3d_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "int8")) |
| x2 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "int64")) |
| _check_inference( |
| bb, relax.op.nn.max_pool3d(x0), relax.TensorStructInfo((2, 3, 32, 32, 32), "float16") |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool3d(x1), relax.TensorStructInfo((2, 3, 32, 32, 32), "int8") |
| ) |
| _check_inference( |
| bb, relax.op.nn.max_pool3d(x2), relax.TensorStructInfo((2, 3, 32, 32, 32), "int64") |
| ) |
| |
| |
| def test_max_pool3d_stride_padding_dilation_int64(): |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28, 28), "float32")) |
| max_pool3d = relax.op.nn.max_pool3d( |
| x, (3, 3, 3), strides=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1) |
| ) |
| |
| assert max_pool3d.attrs.strides[0].dtype == "int64" |
| assert max_pool3d.attrs.strides[1].dtype == "int64" |
| assert max_pool3d.attrs.strides[2].dtype == "int64" |
| assert max_pool3d.attrs.padding[0].dtype == "int64" |
| assert max_pool3d.attrs.padding[1].dtype == "int64" |
| assert max_pool3d.attrs.padding[2].dtype == "int64" |
| assert max_pool3d.attrs.padding[3].dtype == "int64" |
| assert max_pool3d.attrs.padding[4].dtype == "int64" |
| assert max_pool3d.attrs.dilation[0].dtype == "int64" |
| assert max_pool3d.attrs.dilation[1].dtype == "int64" |
| assert max_pool3d.attrs.dilation[2].dtype == "int64" |
| |
| |
| def test_max_pool3d_wrong_pool_size_strides_padding_dilation_length(): |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28, 28), "float32")) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool3d(x, pool_size=(1, 2, 3, 4)) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool3d(x, strides=(1, 2, 3, 4)) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool3d(x, padding=(1, 2, 3, 4)) |
| with pytest.raises(TVMError): |
| relax.op.nn.max_pool3d(x, dilation=(1, 2, 3, 4)) |
| |
| |
| def test_max_pool3d_infer_struct_info_wrong_layout_string(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28, 28), "float32")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool3d(x, layout="OIHW")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool3d(x, out_layout="OHWI")) |
| |
| |
| def test_max_pool3d_wrong_input_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 28, 28, 28, 3), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=4)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool3d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool3d(x1)) |
| |
| |
| def test_max_pool3d_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 28, 28, 28))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 28, 28, 28), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool3d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.max_pool3d(x1)) |
| |
| |
| def test_avg_pool1d_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| x0 = relax.Var("x", R.Tensor((2, 3, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor((2, 32, 3), "float32")) |
| x2 = relax.Var("x", R.Tensor("float32", ndim=3)) |
| x3 = relax.Var("x", R.Tensor("float32")) |
| x4 = relax.Var("x", R.Tensor(ndim=3)) |
| x5 = relax.Var("x", R.Tensor()) |
| x6 = relax.Var("x", R.Tensor((2, 4, 32, 16), "float32")) |
| x7 = relax.Var("x", R.Tensor((2, 3, 32), "float32", vdev0)) |
| |
| _check_inference(bb, relax.op.nn.avg_pool1d(x0), relax.TensorStructInfo((2, 3, 32), "float32")) |
| _check_inference( |
| bb, relax.op.nn.avg_pool1d(x7), relax.TensorStructInfo((2, 3, 32), "float32", vdev0) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x0, pool_size=3), |
| relax.TensorStructInfo((2, 3, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x0, padding=1), |
| relax.TensorStructInfo((2, 3, 34), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x0, padding=[1, 2]), |
| relax.TensorStructInfo((2, 3, 35), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x0, strides=2), |
| relax.TensorStructInfo((2, 3, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x0, dilation=2), |
| relax.TensorStructInfo((2, 3, 32), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x1, layout="NWC"), |
| relax.TensorStructInfo((2, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x0, out_layout="NWC"), |
| relax.TensorStructInfo((2, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool1d(x2), relax.TensorStructInfo(dtype="float32", ndim=3) |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool1d(x3), relax.TensorStructInfo(dtype="float32", ndim=3) |
| ) |
| _check_inference(bb, relax.op.nn.avg_pool1d(x4), relax.TensorStructInfo(dtype="", ndim=3)) |
| _check_inference(bb, relax.op.nn.avg_pool1d(x5), relax.TensorStructInfo(dtype="", ndim=3)) |
| |
| |
| def test_avg_pool1d_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| c16 = tir.Var("c16", "int64") |
| iw = tir.Var("iw", "int64") |
| x0 = relax.Var("x", R.Tensor((n, c, iw), "float32")) |
| x1 = relax.Var("x", R.Tensor((n, c, iw, c16), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x0, pool_size=3, strides=3, padding=2, dilation=2), |
| relax.TensorStructInfo( |
| ( |
| n, |
| c, |
| tvm.tir.floordiv(iw - 1, 3) + 1, |
| ), |
| "float32", |
| ), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x1, layout="NCW16c", out_layout="NWC"), |
| relax.TensorStructInfo((n, iw, c * 16), "float32"), |
| ) |
| |
| |
| def test_avg_pool1d_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=3)) |
| s1 = relax.Var("s", relax.ShapeStructInfo(ndim=4)) |
| s2 = relax.Var("s", relax.ShapeStructInfo()) |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32")) |
| |
| _check_inference( |
| bb, relax.op.nn.avg_pool1d(x0), relax.TensorStructInfo(dtype="float32", ndim=3) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x1, layout="NCW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=4), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x2), |
| relax.TensorStructInfo(dtype="float32", ndim=3), |
| ) |
| |
| |
| def test_avg_pool1d_infer_struct_info_ceil_mode(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 32), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x, pool_size=3, strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x, pool_size=5, strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 15), "float32"), |
| ) |
| |
| |
| def test_avg_pool1d_infer_struct_info_ceil_mode_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| iw = tir.Var("iw", "int64") |
| x = relax.Var("x", R.Tensor((n, c, iw), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool1d(x, pool_size=3, strides=2, padding=1, dilation=2, ceil_mode=True), |
| relax.TensorStructInfo( |
| (n, c, tvm.tir.floordiv(iw, 2)), |
| "float32", |
| ), |
| ) |
| |
| |
| def test_avg_pool1d_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 32), "int8")) |
| x2 = relax.Var("x", R.Tensor((2, 3, 32), "int64")) |
| _check_inference(bb, relax.op.nn.avg_pool1d(x0), relax.TensorStructInfo((2, 3, 32), "float16")) |
| _check_inference(bb, relax.op.nn.avg_pool1d(x1), relax.TensorStructInfo((2, 3, 32), "int8")) |
| _check_inference(bb, relax.op.nn.avg_pool1d(x2), relax.TensorStructInfo((2, 3, 32), "int64")) |
| |
| |
| def test_avg_pool1d_stride_padding_dilation_int64(): |
| x = relax.Var("x", R.Tensor((2, 3, 28), "float32")) |
| avg_pool1d = relax.op.nn.avg_pool1d(x, 3, strides=1, padding=1, dilation=1) |
| |
| assert avg_pool1d.attrs.strides[0].dtype == "int64" |
| assert avg_pool1d.attrs.padding[0].dtype == "int64" |
| assert avg_pool1d.attrs.padding[1].dtype == "int64" |
| assert avg_pool1d.attrs.dilation[0].dtype == "int64" |
| |
| |
| def test_avg_pool1d_wrong_pool_size_strides_padding_dilation_length(): |
| x = relax.Var("x", R.Tensor((2, 3, 28), "float32")) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool1d(x, pool_size=(1, 2)) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool1d(x, strides=(1, 2)) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool1d(x, padding=(1, 2, 3)) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool1d(x, dilation=(1, 2)) |
| |
| |
| def test_avg_pool1d_infer_struct_info_wrong_layout_string(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 28), "float32")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool1d(x, layout="OIW")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool1d(x, out_layout="OWI")) |
| |
| |
| def test_avg_pool1d_wrong_input_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=2)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool1d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool1d(x1)) |
| |
| |
| def test_avg_pool1d_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 28))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 28), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool1d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool1d(x1)) |
| |
| |
| def test_avg_pool2d_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor((2, 32, 32, 3), "float32")) |
| x2 = relax.Var("x", R.Tensor("float32", ndim=4)) |
| x3 = relax.Var("x", R.Tensor("float32")) |
| x4 = relax.Var("x", R.Tensor(ndim=4)) |
| x5 = relax.Var("x", R.Tensor()) |
| x6 = relax.Var("x", R.Tensor((2, 4, 32, 32, 16), "float32")) |
| x7 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32", vdev0)) |
| |
| _check_inference( |
| bb, relax.op.nn.avg_pool2d(x0), relax.TensorStructInfo((2, 3, 32, 32), "float32") |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool2d(x7), relax.TensorStructInfo((2, 3, 32, 32), "float32", vdev0) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x0, pool_size=3), |
| relax.TensorStructInfo((2, 3, 30, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x0, pool_size=(5, 3)), |
| relax.TensorStructInfo((2, 3, 28, 30), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool2d(x0, padding=1), relax.TensorStructInfo((2, 3, 34, 34), "float32") |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x0, padding=[1, 2]), |
| relax.TensorStructInfo((2, 3, 34, 36), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x0, strides=2), |
| relax.TensorStructInfo((2, 3, 16, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x0, dilation=2), |
| relax.TensorStructInfo((2, 3, 32, 32), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x1, layout="NHWC"), |
| relax.TensorStructInfo((2, 32, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x0, out_layout="NHWC"), |
| relax.TensorStructInfo((2, 32, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x6, layout="NCHW16c", out_layout="NHWC16c"), |
| relax.TensorStructInfo((2, 32, 32, 4, 16), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool2d(x2), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool2d(x3), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference(bb, relax.op.nn.avg_pool2d(x4), relax.TensorStructInfo(dtype="", ndim=4)) |
| _check_inference(bb, relax.op.nn.avg_pool2d(x5), relax.TensorStructInfo(dtype="", ndim=4)) |
| |
| |
| def test_avg_pool2d_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| c16 = tir.Var("c16", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| x0 = relax.Var("x", R.Tensor((n, c, ih, iw), "float32")) |
| x1 = relax.Var("x", R.Tensor((n, c, ih, iw, c16), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d( |
| x0, pool_size=(3, 3), strides=(3, 3), padding=(2, 2), dilation=(2, 2) |
| ), |
| relax.TensorStructInfo( |
| ( |
| n, |
| c, |
| tvm.tir.floordiv(ih - 1, 3) + 1, |
| tvm.tir.floordiv(iw - 1, 3) + 1, |
| ), |
| "float32", |
| ), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x1, layout="NCHW16c", out_layout="NHWC"), |
| relax.TensorStructInfo((n, ih, iw, c * 16), "float32"), |
| ) |
| |
| |
| def test_avg_pool2d_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=4)) |
| s1 = relax.Var("s", relax.ShapeStructInfo(ndim=5)) |
| s2 = relax.Var("s", relax.ShapeStructInfo()) |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32")) |
| |
| _check_inference( |
| bb, relax.op.nn.avg_pool2d(x0), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x1, layout="NCHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=5), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x2), |
| relax.TensorStructInfo(dtype="float32", ndim=4), |
| ) |
| |
| |
| def test_avg_pool2d_infer_struct_info_ceil_mode(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x, pool_size=3, strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 16, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d(x, pool_size=(5, 3), strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 15, 16), "float32"), |
| ) |
| |
| |
| def test_avg_pool2d_infer_struct_info_ceil_mode_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| x = relax.Var("x", R.Tensor((n, c, ih, iw), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool2d( |
| x, pool_size=(3, 3), strides=(2, 2), padding=(1, 1), dilation=(2, 2), ceil_mode=True |
| ), |
| relax.TensorStructInfo((n, c, tvm.tir.floordiv(ih, 2), tvm.tir.floordiv(iw, 2)), "float32"), |
| ) |
| |
| |
| def test_avg_pool2d_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 32, 32), "int8")) |
| x2 = relax.Var("x", R.Tensor((2, 3, 32, 32), "int64")) |
| _check_inference( |
| bb, relax.op.nn.avg_pool2d(x0), relax.TensorStructInfo((2, 3, 32, 32), "float16") |
| ) |
| _check_inference(bb, relax.op.nn.avg_pool2d(x1), relax.TensorStructInfo((2, 3, 32, 32), "int8")) |
| _check_inference( |
| bb, relax.op.nn.avg_pool2d(x2), relax.TensorStructInfo((2, 3, 32, 32), "int64") |
| ) |
| |
| |
| def test_avg_pool2d_stride_padding_dilation_int64(): |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| avg_pool2d = relax.op.nn.avg_pool2d(x, (3, 3), strides=(1, 1), padding=(1, 1), dilation=(1, 1)) |
| |
| assert avg_pool2d.attrs.strides[0].dtype == "int64" |
| assert avg_pool2d.attrs.strides[1].dtype == "int64" |
| assert avg_pool2d.attrs.padding[0].dtype == "int64" |
| assert avg_pool2d.attrs.padding[1].dtype == "int64" |
| assert avg_pool2d.attrs.padding[2].dtype == "int64" |
| assert avg_pool2d.attrs.padding[3].dtype == "int64" |
| assert avg_pool2d.attrs.dilation[0].dtype == "int64" |
| assert avg_pool2d.attrs.dilation[1].dtype == "int64" |
| |
| |
| def test_avg_pool2d_wrong_pool_size_strides_padding_dilation_length(): |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool2d(x, pool_size=(1, 2, 3)) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool2d(x, strides=(1, 2, 3)) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool2d(x, padding=(1, 2, 3)) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool2d(x, dilation=(1, 2, 3)) |
| |
| |
| def test_avg_pool2d_infer_struct_info_wrong_layout_string(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool2d(x, layout="OIHW")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool2d(x, out_layout="OHWI")) |
| |
| |
| def test_avg_pool2d_wrong_input_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 28, 28, 3), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=3)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool2d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool2d(x1)) |
| |
| |
| def test_avg_pool2d_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 28, 28))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 28, 28), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool2d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool2d(x1)) |
| |
| |
| def test_avg_pool3d_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor((2, 32, 32, 32, 3), "float32")) |
| x2 = relax.Var("x", R.Tensor("float32", ndim=5)) |
| x3 = relax.Var("x", R.Tensor("float32")) |
| x4 = relax.Var("x", R.Tensor(ndim=5)) |
| x5 = relax.Var("x", R.Tensor()) |
| x6 = relax.Var("x", R.Tensor((2, 4, 32, 32, 32, 16), "float32")) |
| x7 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "float32", vdev0)) |
| |
| _check_inference( |
| bb, relax.op.nn.avg_pool3d(x0), relax.TensorStructInfo((2, 3, 32, 32, 32), "float32") |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool3d(x7), relax.TensorStructInfo((2, 3, 32, 32, 32), "float32", vdev0) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x0, pool_size=3), |
| relax.TensorStructInfo((2, 3, 30, 30, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x0, pool_size=(5, 3, 3)), |
| relax.TensorStructInfo((2, 3, 28, 30, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x0, padding=1), |
| relax.TensorStructInfo((2, 3, 34, 34, 34), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x0, padding=[1, 2, 3]), |
| relax.TensorStructInfo((2, 3, 34, 36, 38), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x0, strides=2), |
| relax.TensorStructInfo((2, 3, 16, 16, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x0, dilation=2), |
| relax.TensorStructInfo((2, 3, 32, 32, 32), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x1, layout="NCDHW"), |
| relax.TensorStructInfo((2, 32, 32, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x0, out_layout="NCDHW"), |
| relax.TensorStructInfo((2, 3, 32, 32, 32), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x6, layout="NCDHW16c", out_layout="NDHWC16c"), |
| relax.TensorStructInfo((2, 32, 32, 32, 4, 16), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool3d(x2), relax.TensorStructInfo(dtype="float32", ndim=5) |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool3d(x3), relax.TensorStructInfo(dtype="float32", ndim=5) |
| ) |
| _check_inference(bb, relax.op.nn.avg_pool3d(x4), relax.TensorStructInfo(dtype="", ndim=5)) |
| _check_inference(bb, relax.op.nn.avg_pool3d(x5), relax.TensorStructInfo(dtype="", ndim=5)) |
| |
| |
| def test_avg_pool3d_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| c16 = tir.Var("c16", "int64") |
| id_ = tir.Var("id", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| x0 = relax.Var("x", R.Tensor((n, c, id_, ih, iw), "float32")) |
| x1 = relax.Var("x", R.Tensor((n, c, id_, ih, iw, c16), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d( |
| x0, pool_size=(3, 3, 3), strides=(3, 3, 3), padding=(2, 2, 2), dilation=(2, 2, 2) |
| ), |
| relax.TensorStructInfo( |
| ( |
| n, |
| c, |
| tvm.tir.floordiv(id_ - 1, 3) + 1, |
| tvm.tir.floordiv(ih - 1, 3) + 1, |
| tvm.tir.floordiv(iw - 1, 3) + 1, |
| ), |
| "float32", |
| ), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x1, layout="NCDHW16c", out_layout="NDHWC"), |
| relax.TensorStructInfo((n, id_, ih, iw, c * 16), "float32"), |
| ) |
| |
| |
| def test_avg_pool3d_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=5)) |
| s1 = relax.Var("s", relax.ShapeStructInfo(ndim=6)) |
| s2 = relax.Var("s", relax.ShapeStructInfo()) |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32")) |
| |
| _check_inference( |
| bb, relax.op.nn.avg_pool3d(x0), relax.TensorStructInfo(dtype="float32", ndim=5) |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x1, layout="NCDHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=6), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x2), |
| relax.TensorStructInfo(dtype="float32", ndim=5), |
| ) |
| |
| |
| def test_avg_pool3d_infer_struct_info_ceil_mode(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x, pool_size=3, strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 16, 16, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d(x, pool_size=(5, 3, 3), strides=2, ceil_mode=True), |
| relax.TensorStructInfo((2, 3, 15, 16, 16), "float32"), |
| ) |
| |
| |
| def test_avg_pool3d_infer_struct_info_ceil_mode_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| id_ = tir.Var("id", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| x = relax.Var("x", R.Tensor((n, c, id_, ih, iw), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.avg_pool3d( |
| x, |
| pool_size=(3, 3, 3), |
| strides=(2, 2, 2), |
| padding=(1, 1, 1), |
| dilation=(2, 2, 2), |
| ceil_mode=True, |
| ), |
| relax.TensorStructInfo( |
| ( |
| n, |
| c, |
| tvm.tir.floordiv(id_, 2), |
| tvm.tir.floordiv(ih, 2), |
| tvm.tir.floordiv(iw, 2), |
| ), |
| "float32", |
| ), |
| ) |
| |
| |
| def test_avg_pool3d_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "int8")) |
| x2 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "int64")) |
| |
| _check_inference( |
| bb, relax.op.nn.avg_pool3d(x0), relax.TensorStructInfo((2, 3, 32, 32, 32), "float16") |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool3d(x1), relax.TensorStructInfo((2, 3, 32, 32, 32), "int8") |
| ) |
| _check_inference( |
| bb, relax.op.nn.avg_pool3d(x2), relax.TensorStructInfo((2, 3, 32, 32, 32), "int64") |
| ) |
| |
| |
| def test_avg_pool3d_stride_padding_dilation_int64(): |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28, 28), "float32")) |
| avg_pool3d = relax.op.nn.avg_pool3d( |
| x, (3, 3, 3), strides=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1) |
| ) |
| |
| assert avg_pool3d.attrs.strides[0].dtype == "int64" |
| assert avg_pool3d.attrs.strides[1].dtype == "int64" |
| assert avg_pool3d.attrs.strides[2].dtype == "int64" |
| assert avg_pool3d.attrs.padding[0].dtype == "int64" |
| assert avg_pool3d.attrs.padding[1].dtype == "int64" |
| assert avg_pool3d.attrs.padding[2].dtype == "int64" |
| assert avg_pool3d.attrs.dilation[0].dtype == "int64" |
| assert avg_pool3d.attrs.dilation[1].dtype == "int64" |
| assert avg_pool3d.attrs.dilation[2].dtype == "int64" |
| |
| |
| def test_avg_pool3d_wrong_pool_size_strides_padding_dilation_length(): |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28, 28), "float32")) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool3d(x, pool_size=(1, 2, 3, 4)) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool3d(x, strides=(1, 2, 3, 4)) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool3d(x, padding=(1, 2, 3, 4)) |
| with pytest.raises(TVMError): |
| relax.op.nn.avg_pool3d(x, dilation=(1, 2, 3, 4)) |
| |
| |
| def test_avg_pool3d_infer_struct_info_wrong_layout_string(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28, 28), "float32")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool3d(x, layout="OIHW")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool3d(x, out_layout="OHWI")) |
| |
| |
| def test_avg_pool3d_wrong_input_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 28, 28, 28, 3), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=4)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool3d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool3d(x1)) |
| |
| |
| def test_avg_pool3d_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 28, 28, 28))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 28, 28, 28), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool3d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.avg_pool3d(x1)) |
| |
| |
| def test_adaptive_avg_pool1d_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| |
| x0 = relax.Var("x", R.Tensor((2, 3, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=3)) |
| x2 = relax.Var("x", R.Tensor("float32")) |
| x3 = relax.Var("x", R.Tensor(ndim=3)) |
| x4 = relax.Var("x", R.Tensor()) |
| |
| x5 = relax.Var("x", R.Tensor((2, 3, 32), "float32", vdev0)) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x0), |
| relax.TensorStructInfo((2, 3, 32), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x5), |
| relax.TensorStructInfo((2, 3, 32), "float32", vdev0), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x0, output_size=16), |
| relax.TensorStructInfo((2, 3, 16), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x1), |
| relax.TensorStructInfo(dtype="float32", ndim=3), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x2), |
| relax.TensorStructInfo(dtype="float32", ndim=3), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x3), |
| relax.TensorStructInfo(dtype="", ndim=3), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x4), |
| relax.TensorStructInfo(dtype="", ndim=3), |
| ) |
| |
| |
| def test_adaptive_avg_pool1d_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| l = tir.Var("l", "int64") |
| |
| x0 = relax.Var("x", R.Tensor((n, c, l), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x0), |
| relax.TensorStructInfo((n, c, l), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x0, output_size=64), |
| relax.TensorStructInfo((n, c, 64), "float32"), |
| ) |
| |
| |
| def test_adaptive_avg_pool1d_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=3)) |
| s1 = relax.Var("s", relax.ShapeStructInfo()) |
| |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x0), |
| relax.TensorStructInfo(s0, "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x0, output_size=20), |
| relax.TensorStructInfo(dtype="float32", ndim=3), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool1d(x1), |
| relax.TensorStructInfo(s1, dtype="float32"), |
| ) |
| |
| |
| def test_adaptive_avg_pool1d_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 64), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 64), "int8")) |
| x2 = relax.Var("x", R.Tensor((2, 3, 64), "int64")) |
| |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool1d(x0), relax.TensorStructInfo((2, 3, 64), "float16") |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool1d(x1), relax.TensorStructInfo((2, 3, 64), "int8") |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool1d(x2), relax.TensorStructInfo((2, 3, 64), "int64") |
| ) |
| |
| |
| def test_adaptive_avg_pool1d_wrong_output_size_ndim(): |
| x = relax.Var("x", R.Tensor((2, 3, 64), "float32")) |
| with pytest.raises(TVMError): |
| relax.op.nn.adaptive_avg_pool1d(x, output_size=(32, 32)) |
| |
| |
| def test_adaptive_avg_pool1d_infer_struct_info_wrong_layout_string(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 64), "float32")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool1d(x, layout="OIW")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool1d(x, out_layout="OWI")) |
| |
| |
| def test_adaptive_avg_pool1d_wrong_input_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=2)) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool1d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool1d(x1)) |
| |
| |
| def test_adaptive_avg_pool1d_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 64))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 64), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool1d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool1d(x1)) |
| |
| |
| def test_adaptive_avg_pool2d_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor((2, 32, 32, 3), "float32")) |
| x2 = relax.Var("x", R.Tensor("float32", ndim=4)) |
| x3 = relax.Var("x", R.Tensor("float32")) |
| x4 = relax.Var("x", R.Tensor(ndim=4)) |
| x5 = relax.Var("x", R.Tensor()) |
| x6 = relax.Var("x", R.Tensor((2, 4, 32, 32, 16), "float32")) |
| x7 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32", vdev0)) |
| |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool2d(x0), relax.TensorStructInfo((2, 3, 32, 32), "float32") |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x7), |
| relax.TensorStructInfo((2, 3, 32, 32), "float32", vdev0), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x0, output_size=30), |
| relax.TensorStructInfo((2, 3, 30, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x0, output_size=(28, 30)), |
| relax.TensorStructInfo((2, 3, 28, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x1, layout="NHWC"), |
| relax.TensorStructInfo((2, 32, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x0, out_layout="NHWC"), |
| relax.TensorStructInfo((2, 32, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x6, layout="NCHW16c", out_layout="NHWC16c"), |
| relax.TensorStructInfo((2, 32, 32, 4, 16), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool2d(x2), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool2d(x3), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool2d(x4), relax.TensorStructInfo(dtype="", ndim=4) |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool2d(x5), relax.TensorStructInfo(dtype="", ndim=4) |
| ) |
| |
| |
| def test_adaptive_avg_pool2d_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| c16 = tir.Var("c16", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| x0 = relax.Var("x", R.Tensor((n, c, ih, iw), "float32")) |
| x1 = relax.Var("x", R.Tensor((n, c, ih, iw, c16), "float32")) |
| |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool2d(x0), relax.TensorStructInfo((n, c, ih, iw), "float32") |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x0, output_size=256), |
| relax.TensorStructInfo((n, c, 256, 256), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x0, output_size=(256, 128)), |
| relax.TensorStructInfo((n, c, 256, 128), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x1, layout="NCHW16c", out_layout="NHWC"), |
| relax.TensorStructInfo((n, ih, iw, c * 16), "float32"), |
| ) |
| |
| |
| def test_adaptive_avg_pool2d_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=4)) |
| s1 = relax.Var("s", relax.ShapeStructInfo(ndim=5)) |
| s2 = relax.Var("s", relax.ShapeStructInfo()) |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32")) |
| |
| _check_inference(bb, relax.op.nn.adaptive_avg_pool2d(x0), relax.TensorStructInfo(s0, "float32")) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x0, output_size=32), |
| relax.TensorStructInfo(dtype="float32", ndim=4), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x1, layout="NCHW16c"), |
| relax.TensorStructInfo(s1, "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x0, out_layout="NCHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=5), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool2d(x2, out_layout="NCHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=5), |
| ) |
| |
| |
| def test_adaptive_avg_pool2d_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 32, 32), "int8")) |
| x2 = relax.Var("x", R.Tensor((2, 3, 32, 32), "int64")) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool2d(x0), relax.TensorStructInfo((2, 3, 32, 32), "float16") |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool2d(x1), relax.TensorStructInfo((2, 3, 32, 32), "int8") |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool2d(x2), relax.TensorStructInfo((2, 3, 32, 32), "int64") |
| ) |
| |
| |
| def test_adaptive_avg_pool2d_wrong_output_size_ndim(): |
| x = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| with pytest.raises(TVMError): |
| relax.op.nn.adaptive_avg_pool2d(x, (32, 32, 32)) |
| |
| |
| def test_adaptive_avg_pool2d_infer_struct_info_wrong_layout_string(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool2d(x, layout="OIHW")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool2d(x, out_layout="OHWI")) |
| |
| |
| def test_adaptive_avg_pool2d_wrong_input_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 28, 28, 3), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=3)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool2d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool2d(x1)) |
| |
| |
| def test_adaptive_avg_pool2d_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 28, 28))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 28, 28), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool2d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool2d(x1)) |
| |
| |
| def test_adaptive_avg_pool3d_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor((2, 32, 32, 32, 3), "float32")) |
| x2 = relax.Var("x", R.Tensor("float32", ndim=5)) |
| x3 = relax.Var("x", R.Tensor("float32")) |
| x4 = relax.Var("x", R.Tensor(ndim=5)) |
| x5 = relax.Var("x", R.Tensor()) |
| x6 = relax.Var("x", R.Tensor((2, 4, 32, 32, 32, 16), "float32")) |
| x7 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "float32", vdev0)) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x0), |
| relax.TensorStructInfo((2, 3, 32, 32, 32), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x7), |
| relax.TensorStructInfo((2, 3, 32, 32, 32), "float32", vdev0), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x0, output_size=30), |
| relax.TensorStructInfo((2, 3, 30, 30, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x0, output_size=(28, 30, 32)), |
| relax.TensorStructInfo((2, 3, 28, 30, 32), "float32"), |
| ) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x1, layout="NCDHW"), |
| relax.TensorStructInfo((2, 32, 32, 32, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x0, out_layout="NCDHW"), |
| relax.TensorStructInfo((2, 3, 32, 32, 32), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x6, layout="NCDHW16c", out_layout="NDHWC16c"), |
| relax.TensorStructInfo((2, 32, 32, 32, 4, 16), "float32"), |
| ) |
| |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool3d(x2), relax.TensorStructInfo(dtype="float32", ndim=5) |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool3d(x3), relax.TensorStructInfo(dtype="float32", ndim=5) |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool3d(x4), relax.TensorStructInfo(dtype="", ndim=5) |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool3d(x5), relax.TensorStructInfo(dtype="", ndim=5) |
| ) |
| |
| |
| def test_adaptive_avg_pool3d_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| c16 = tir.Var("c16", "int64") |
| d = tir.Var("d", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| |
| x0 = relax.Var("x", R.Tensor((n, c, d, ih, iw), "float32")) |
| x1 = relax.Var("x", R.Tensor((n, c, d, ih, iw, c16), "float32")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x0), |
| relax.TensorStructInfo((n, c, d, ih, iw), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x0, output_size=256), |
| relax.TensorStructInfo((n, c, 256, 256, 256), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x0, output_size=(256, 128, 64)), |
| relax.TensorStructInfo((n, c, 256, 128, 64), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x1, layout="NCDHW16c", out_layout="NDHWC"), |
| relax.TensorStructInfo((n, d, ih, iw, c * 16), "float32"), |
| ) |
| |
| |
| def test_adaptive_avg_pool3d_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=5)) |
| s1 = relax.Var("s", relax.ShapeStructInfo(ndim=6)) |
| s2 = relax.Var("s", relax.ShapeStructInfo()) |
| |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32")) |
| |
| _check_inference(bb, relax.op.nn.adaptive_avg_pool3d(x0), relax.TensorStructInfo(s0, "float32")) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x0, output_size=32), |
| relax.TensorStructInfo(dtype="float32", ndim=5), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x1, layout="NCDHW16c"), |
| relax.TensorStructInfo(s1, "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x0, out_layout="NCDHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=6), |
| ) |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x2, out_layout="NCDHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=6), |
| ) |
| |
| |
| def test_adaptive_avg_pool3d_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "int8")) |
| x2 = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "int64")) |
| |
| _check_inference( |
| bb, |
| relax.op.nn.adaptive_avg_pool3d(x0), |
| relax.TensorStructInfo((2, 3, 32, 32, 32), "float16"), |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool3d(x1), relax.TensorStructInfo((2, 3, 32, 32, 32), "int8") |
| ) |
| _check_inference( |
| bb, relax.op.nn.adaptive_avg_pool3d(x2), relax.TensorStructInfo((2, 3, 32, 32, 32), "int64") |
| ) |
| |
| |
| def test_adaptive_avg_pool3d_wrong_output_size_ndim(): |
| x = relax.Var("x", R.Tensor((2, 3, 32, 32, 32), "float32")) |
| |
| with pytest.raises(TVMError): |
| relax.op.nn.adaptive_avg_pool3d(x, (32, 32, 32, 32)) |
| |
| |
| def test_adaptive_avg_pool3d_infer_struct_info_wrong_layout_string(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28, 28), "float32")) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool3d(x, layout="OIDHW")) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool3d(x, out_layout="OHIDW")) |
| |
| |
| def test_adaptive_avg_pool3d_wrong_input_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 28, 28, 28, 3), "float32")) |
| x1 = relax.Var("x", R.Tensor("float32", ndim=3)) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool3d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool3d(x1)) |
| |
| |
| def test_adaptive_avg_pool3d_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 28, 28, 28))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 28, 28, 28), "float32"))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool3d(x0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.nn.adaptive_avg_pool3d(x1)) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |