blob: a0ff507ef880b6b97df54bb3276253a08db7fc61 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import pytest
import tvm
import tvm.testing
from tvm import TVMError, relax, tir
from tvm.ir import Op, VDevice
from tvm.script import relax as R
def test_op_correctness():
x = relax.Var("x", R.Tensor((2, 3), "float32"))
assert relax.op.nn.relu(x).op == Op.get("relax.nn.relu")
assert relax.op.nn.leakyrelu(x).op == Op.get("relax.nn.leakyrelu")
assert relax.op.nn.softplus(x).op == Op.get("relax.nn.softplus")
assert relax.op.nn.gelu(x).op == Op.get("relax.nn.gelu")
assert relax.op.nn.silu(x).op == Op.get("relax.nn.silu")
assert relax.op.nn.softmax(x).op == Op.get("relax.nn.softmax")
assert relax.op.nn.log_softmax(x).op == Op.get("relax.nn.log_softmax")
assert relax.op.nn.dropout(x).op == Op.get("relax.nn.dropout")
assert relax.op.nn.pad(x, (1, 1, 1, 1)).op == Op.get("relax.nn.pad")
x = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32"))
alpha = relax.Var("alpha", R.Tensor((3,), "float32"))
assert relax.op.nn.prelu(x, alpha, axis=1).op == Op.get("relax.nn.prelu")
x = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32"))
gamma = relax.Var("gamma", R.Tensor((3,), "float32"))
beta = relax.Var("beta", R.Tensor((3,), "float32"))
moving_mean = relax.Var("moving_mean", R.Tensor((3,), "float32"))
moving_var = relax.Var("moving_var", R.Tensor((3,), "float32"))
assert relax.op.nn.batch_norm(x, gamma, beta, moving_mean, moving_var, axis=1).op == Op.get(
"relax.nn.batch_norm"
)
assert relax.op.nn.layer_norm(x, gamma, beta, axes=1).op == Op.get("relax.nn.layer_norm")
x = relax.Var("x", R.Tensor((2, 3), "float32"))
y = relax.Var("y", R.Tensor((2, 3), "float32"))
assert relax.op.nn.cross_entropy_with_logits(x, y).op == Op.get(
"relax.nn.cross_entropy_with_logits"
)
def _check_inference(bb: relax.BlockBuilder, call: relax.Call, expected_sinfo: relax.StructInfo):
ret = bb.normalize(call)
tvm.ir.assert_structural_equal(ret.struct_info, expected_sinfo)
def test_linear_unit_infer_struct_info():
bb = relax.BlockBuilder()
vdev0 = VDevice("llvm")
x0 = relax.Var("x", R.Tensor((2, 3), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=3))
x2 = relax.Var("x", R.Tensor("float32", ndim=-1))
x3 = relax.Var("x", R.Tensor((2, 3)))
x4 = relax.Var("x", R.Tensor())
x5 = relax.Var("x", R.Tensor((3, 4)))
x6 = relax.Var("x", R.Tensor((2, 3), "float32", vdev0))
_check_inference(bb, relax.op.nn.relu(x0), relax.TensorStructInfo((2, 3), "float32"))
_check_inference(bb, relax.op.nn.relu(x6), relax.TensorStructInfo((2, 3), "float32", vdev0))
_check_inference(bb, relax.op.nn.relu6(x0), relax.TensorStructInfo((2, 3), "float32"))
_check_inference(bb, relax.op.nn.relu6(x6), relax.TensorStructInfo((2, 3), "float32", vdev0))
_check_inference(bb, relax.op.nn.silu(x1), relax.TensorStructInfo(dtype="float32", ndim=3))
_check_inference(bb, relax.op.nn.gelu(x2), relax.TensorStructInfo(dtype="float32"))
_check_inference(bb, relax.op.nn.relu(x3), relax.TensorStructInfo((2, 3), dtype=""))
_check_inference(bb, relax.op.nn.relu6(x3), relax.TensorStructInfo((2, 3), dtype=""))
_check_inference(bb, relax.op.nn.gelu(x4), relax.TensorStructInfo(dtype=""))
_check_inference(bb, relax.op.nn.leakyrelu(x0), relax.TensorStructInfo((2, 3), "float32"))
_check_inference(bb, relax.op.nn.leakyrelu(x5), relax.TensorStructInfo((3, 4), dtype=""))
_check_inference(bb, relax.op.nn.softplus(x0), relax.TensorStructInfo((2, 3), "float32"))
_check_inference(bb, relax.op.nn.softplus(x5), relax.TensorStructInfo((3, 4), dtype=""))
def test_linear_unit_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
m = tir.Var("m", "int64")
n = tir.Var("n", "int64")
x0 = relax.Var("x", R.Tensor((m, n), "float32"))
x1 = relax.Var("x", R.Tensor((4, n), "float32"))
_check_inference(bb, relax.op.nn.silu(x0), relax.TensorStructInfo((m, n), "float32"))
_check_inference(bb, relax.op.nn.relu(x1), relax.TensorStructInfo((4, n), "float32"))
_check_inference(bb, relax.op.nn.relu6(x1), relax.TensorStructInfo((4, n), "float32"))
_check_inference(bb, relax.op.nn.leakyrelu(x1), relax.TensorStructInfo((4, n), "float32"))
_check_inference(bb, relax.op.nn.softplus(x1), relax.TensorStructInfo((4, n), "float32"))
def test_linear_unit_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s", relax.ShapeStructInfo(ndim=2))
s1 = relax.Var("s", relax.ShapeStructInfo())
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
_check_inference(bb, relax.op.nn.gelu(x0), relax.TensorStructInfo(s0, "float32"))
_check_inference(bb, relax.op.nn.relu(x1), relax.TensorStructInfo(s1, "float32"))
_check_inference(bb, relax.op.nn.relu6(x1), relax.TensorStructInfo(s1, "float32"))
_check_inference(bb, relax.op.nn.leakyrelu(x1), relax.TensorStructInfo(s1, "float32"))
_check_inference(bb, relax.op.nn.softplus(x1), relax.TensorStructInfo(s1, "float32"))
def test_linear_unit_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float64"))
x1 = relax.Var("x", R.Tensor((2, 3), "int8"))
x2 = relax.Var("x", R.Tensor((2, 3), "int64"))
_check_inference(bb, relax.op.nn.relu(x0), relax.TensorStructInfo((2, 3), "float64"))
_check_inference(bb, relax.op.nn.relu(x1), relax.TensorStructInfo((2, 3), "int8"))
_check_inference(bb, relax.op.nn.relu(x2), relax.TensorStructInfo((2, 3), "int64"))
def test_linear_unit_infer_struct_info_invalid_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "int8"))
x1 = relax.Var("x", R.Tensor((2, 3), "int64"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.gelu(x0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.silu(x1))
def test_linear_unit_infer_struct_info_wrong_input_type():
bb = relax.BlockBuilder()
x0 = relax.Var("x", relax.ShapeStructInfo((2, 3)))
x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3), "float32")))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.gelu(x0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.silu(x1))
def test_softmax_log_softmax_infer_struct_info():
bb = relax.BlockBuilder()
vdev0 = VDevice("llvm")
x0 = relax.Var("x", R.Tensor((2, 3), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=3))
x2 = relax.Var("x", R.Tensor("float32", ndim=-1))
x3 = relax.Var("x", R.Tensor((2, 3)))
x4 = relax.Var("x", R.Tensor())
x5 = relax.Var("x", R.Tensor((2, 3), "float32", vdev0))
x6 = relax.Var("x", R.Tensor((2, 3), "bfloat16"))
_check_inference(bb, relax.op.nn.softmax(x0), relax.TensorStructInfo((2, 3), "float32"))
_check_inference(bb, relax.op.nn.softmax(x5), relax.TensorStructInfo((2, 3), "float32", vdev0))
_check_inference(
bb, relax.op.nn.softmax(x1, axis=0), relax.TensorStructInfo(dtype="float32", ndim=3)
)
_check_inference(bb, relax.op.nn.softmax(x2, axis=1), relax.TensorStructInfo(dtype="float32"))
_check_inference(bb, relax.op.nn.softmax(x3, axis=-1), relax.TensorStructInfo((2, 3), dtype=""))
_check_inference(bb, relax.op.nn.softmax(x4, axis=-2), relax.TensorStructInfo(dtype=""))
_check_inference(bb, relax.op.nn.log_softmax(x0), relax.TensorStructInfo((2, 3), "float32"))
_check_inference(
bb, relax.op.nn.log_softmax(x1, axis=0), relax.TensorStructInfo(dtype="float32", ndim=3)
)
_check_inference(
bb, relax.op.nn.log_softmax(x2, axis=1), relax.TensorStructInfo(dtype="float32")
)
_check_inference(
bb, relax.op.nn.log_softmax(x3, axis=-1), relax.TensorStructInfo((2, 3), dtype="")
)
_check_inference(bb, relax.op.nn.log_softmax(x4, axis=-2), relax.TensorStructInfo(dtype=""))
_check_inference(bb, relax.op.nn.softmax(x6), relax.TensorStructInfo((2, 3), dtype="bfloat16"))
_check_inference(
bb, relax.op.nn.log_softmax(x6), relax.TensorStructInfo((2, 3), dtype="bfloat16")
)
def test_softmax_log_softmax_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
m = tir.Var("m", "int64")
n = tir.Var("n", "int64")
x0 = relax.Var("x", R.Tensor((m, n), "float32"))
x1 = relax.Var("x", R.Tensor((4, n), "float32"))
_check_inference(bb, relax.op.nn.softmax(x0), relax.TensorStructInfo((m, n), "float32"))
_check_inference(bb, relax.op.nn.softmax(x1, axis=0), relax.TensorStructInfo((4, n), "float32"))
_check_inference(bb, relax.op.nn.log_softmax(x0), relax.TensorStructInfo((m, n), "float32"))
_check_inference(
bb, relax.op.nn.log_softmax(x1, axis=0), relax.TensorStructInfo((4, n), "float32")
)
def test_softmax_log_softmax_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s", relax.ShapeStructInfo(ndim=2))
s1 = relax.Var("s", relax.ShapeStructInfo())
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
_check_inference(bb, relax.op.nn.softmax(x0), relax.TensorStructInfo(s0, "float32"))
_check_inference(bb, relax.op.nn.softmax(x1), relax.TensorStructInfo(s1, "float32"))
_check_inference(bb, relax.op.nn.log_softmax(x0), relax.TensorStructInfo(s0, "float32"))
_check_inference(bb, relax.op.nn.log_softmax(x1), relax.TensorStructInfo(s1, "float32"))
def test_softmax_log_softmax_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float16"))
x1 = relax.Var("x", R.Tensor((2, 3), "float64"))
_check_inference(bb, relax.op.nn.softmax(x0), relax.TensorStructInfo((2, 3), "float16"))
_check_inference(bb, relax.op.nn.softmax(x1), relax.TensorStructInfo((2, 3), "float64"))
_check_inference(bb, relax.op.nn.log_softmax(x0), relax.TensorStructInfo((2, 3), "float16"))
_check_inference(bb, relax.op.nn.log_softmax(x1), relax.TensorStructInfo((2, 3), "float64"))
def test_softmax_log_softmax_infer_struct_info_invalid_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "int8"))
x1 = relax.Var("x", R.Tensor((2, 3), "int64"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.softmax(x0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.softmax(x1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.log_softmax(x0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.log_softmax(x1))
def test_softmax_log_softmax_infer_struct_info_axis_out_of_range():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.softmax(x, axis=3))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.softmax(x, axis=-4))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.log_softmax(x, axis=3))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.log_softmax(x, axis=-4))
def test_softmax_log_softmax_wrong_with_multiple_axes():
x = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
with pytest.raises(TypeError):
relax.op.nn.softmax(x, axis=[1, 2])
with pytest.raises(TypeError):
relax.op.nn.softmax(x, axis=[-1, -2, -3])
with pytest.raises(TypeError):
relax.op.nn.log_softmax(x, axis=[1, 2])
with pytest.raises(TypeError):
relax.op.nn.log_softmax(x, axis=[-1, -2, -3])
def test_softmax_log_softmax_infer_struct_info_wrong_input_type():
bb = relax.BlockBuilder()
x0 = relax.Var("x", relax.ShapeStructInfo((2, 3)))
x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3), "float32")))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.softmax(x0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.softmax(x1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.log_softmax(x0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.log_softmax(x1))
def test_batch_norm_infer_struct_info():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=4))
x2 = relax.Var("x", R.Tensor("float32"))
x3 = relax.Var("x", R.Tensor(ndim=4))
x4 = relax.Var("x", R.Tensor())
gamma0 = relax.Var("gamma", R.Tensor((3,), "float32"))
gamma1 = relax.Var("gamma", R.Tensor("float32", ndim=1))
gamma2 = relax.Var("gamma", R.Tensor(ndim=1))
beta0 = relax.Var("beta", R.Tensor((3,), "float32"))
beta1 = relax.Var("beta", R.Tensor((3,)))
moving_mean0 = relax.Var("moving_mean", R.Tensor((3,), "float32"))
moving_mean1 = relax.Var("moving_mean", R.Tensor((3,)))
moving_var0 = relax.Var("moving_var", R.Tensor((3,), "float32"))
moving_var1 = relax.Var("moving_var", R.Tensor("float32", ndim=1))
moving_var2 = relax.Var("moving_var", R.Tensor(ndim=1))
_check_inference(
bb,
relax.op.nn.batch_norm(x0, gamma0, beta0, moving_mean0, moving_var0, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 3, 28, 28), "float32"),
relax.TensorStructInfo((3,), "float32"),
relax.TensorStructInfo((3,), "float32"),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x0, gamma0, beta0, moving_mean0, moving_var0, axis=-3),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 3, 28, 28), "float32"),
relax.TensorStructInfo((3,), "float32"),
relax.TensorStructInfo((3,), "float32"),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x1, gamma0, beta0, moving_mean0, moving_var0, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype="float32", ndim=4),
relax.TensorStructInfo((3,), "float32"),
relax.TensorStructInfo((3,), "float32"),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x0, gamma1, beta0, moving_mean0, moving_var0, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 3, 28, 28), "float32"),
relax.TensorStructInfo((3,), "float32"),
relax.TensorStructInfo((3,), "float32"),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x0, gamma0, beta0, moving_mean0, moving_var1, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 3, 28, 28), "float32"),
relax.TensorStructInfo((3,), "float32"),
relax.TensorStructInfo(dtype="float32", ndim=1),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x1, gamma1, beta0, moving_mean0, moving_var1, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype="float32", ndim=4),
relax.TensorStructInfo((3,), "float32"),
relax.TensorStructInfo(dtype="float32", ndim=1),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x2, gamma1, beta0, moving_mean0, moving_var1, axis=1, momentum=0.1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype="float32"),
relax.TensorStructInfo((3,), "float32"),
relax.TensorStructInfo(dtype="float32", ndim=1),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x3, gamma2, beta1, moving_mean1, moving_var2, axis=1, momentum=0.1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(ndim=4, dtype=""),
relax.TensorStructInfo((3,), dtype=""),
relax.TensorStructInfo(dtype="", ndim=1),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x4, gamma2, beta1, moving_mean1, moving_var2, axis=1, momentum=0.1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype=""),
relax.TensorStructInfo((3,), dtype=""),
relax.TensorStructInfo(dtype="", ndim=1),
]
),
)
def test_batch_norm_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
n = tir.Var("n", "int64")
c0 = tir.Var("c", "int64")
c1 = tir.Var("c", "int64")
h = tir.Var("h", "int64")
w = tir.Var("w", "int64")
x0 = relax.Var("x", R.Tensor((n, c0, h, w), "float32"))
x1 = relax.Var("x", R.Tensor((n, c1, h, w), "float32"))
x2 = relax.Var("x", R.Tensor("float32", ndim=4))
gamma0 = relax.Var("gamma", R.Tensor((c0,), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((c1,), "float32"))
gamma2 = relax.Var("gamma", R.Tensor("float32", ndim=1))
beta = relax.Var("beta", R.Tensor((c0,), "float32"))
moving_mean = relax.Var("moving_mean", R.Tensor((c0,), "float32"))
moving_var0 = relax.Var("moving_var", R.Tensor((c0,), "float32"))
moving_var1 = relax.Var("moving_var", R.Tensor((c1,), "float32"))
moving_var2 = relax.Var("moving_var", R.Tensor("float32", ndim=1))
_check_inference(
bb,
relax.op.nn.batch_norm(x0, gamma0, beta, moving_mean, moving_var0, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo((n, c0, h, w), "float32"),
relax.TensorStructInfo((c0,), "float32"),
relax.TensorStructInfo((c0,), "float32"),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x1, gamma0, beta, moving_mean, moving_var0, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype="float32", ndim=4),
relax.TensorStructInfo(dtype="float32", ndim=1),
relax.TensorStructInfo(dtype="float32", ndim=1),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x2, gamma0, beta, moving_mean, moving_var0, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype="float32", ndim=4),
relax.TensorStructInfo((c0,), "float32"),
relax.TensorStructInfo((c0,), "float32"),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x0, gamma1, beta, moving_mean, moving_var0, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype="float32", ndim=4),
relax.TensorStructInfo(dtype="float32", ndim=1),
relax.TensorStructInfo(dtype="float32", ndim=1),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x0, gamma0, beta, moving_mean, moving_var1, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype="float32", ndim=4),
relax.TensorStructInfo(dtype="float32", ndim=1),
relax.TensorStructInfo(dtype="float32", ndim=1),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x0, gamma2, beta, moving_mean, moving_var0, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo((n, c0, h, w), "float32"),
relax.TensorStructInfo((c0,), "float32"),
relax.TensorStructInfo((c0,), "float32"),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x0, gamma0, beta, moving_mean, moving_var2, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo((n, c0, h, w), "float32"),
relax.TensorStructInfo((c0,), "float32"),
relax.TensorStructInfo(dtype="float32", ndim=1),
]
),
)
def test_batch_norm_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s0", relax.ShapeStructInfo(ndim=4))
s1 = relax.Var("s1", relax.ShapeStructInfo())
s2 = relax.Var("s2", relax.ShapeStructInfo(ndim=1))
s3 = relax.Var("s3", relax.ShapeStructInfo(ndim=1))
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
gamma = relax.Var("gamma", relax.TensorStructInfo(s2, "float32"))
beta = relax.Var("beta", relax.TensorStructInfo(s3, "float32"))
moving_mean = relax.Var("moving_mean", relax.TensorStructInfo(s2, "float32"))
moving_var = relax.Var("moving_var", relax.TensorStructInfo(s3, "float32"))
_check_inference(
bb,
relax.op.nn.batch_norm(x0, gamma, beta, moving_mean, moving_var, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(s0, "float32"),
relax.TensorStructInfo(s2, "float32"),
relax.TensorStructInfo(s3, "float32"),
]
),
)
_check_inference(
bb,
relax.op.nn.batch_norm(x1, gamma, beta, moving_mean, moving_var, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(s1, "float32"),
relax.TensorStructInfo(s2, "float32"),
relax.TensorStructInfo(s3, "float32"),
]
),
)
def test_batch_norm_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float16"))
gamma = relax.Var("gamma", R.Tensor((3,), "float16"))
beta = relax.Var("beta", R.Tensor((3,), "float16"))
moving_mean = relax.Var("moving_mean", R.Tensor((3,), "float16"))
moving_var = relax.Var("moving_var", R.Tensor((3,), "float16"))
_check_inference(
bb,
relax.op.nn.batch_norm(x, gamma, beta, moving_mean, moving_var, axis=1),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 3, 28, 28), "float16"),
relax.TensorStructInfo((3,), "float16"),
relax.TensorStructInfo((3,), "float16"),
]
),
)
def test_batch_norm_infer_struct_info_invalid_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 28, 28), "int8"))
gamma0 = relax.Var("gamma", R.Tensor((3,), "int8"))
beta0 = relax.Var("beta", R.Tensor((3,), "int8"))
moving_mean0 = relax.Var("moving_mean", R.Tensor((3,), "int8"))
moving_var0 = relax.Var("moving_var", R.Tensor((3,), "int8"))
x1 = relax.Var("x", R.Tensor((2, 3, 28, 28), "int32"))
gamma1 = relax.Var("gamma", R.Tensor((3,), "int32"))
beta1 = relax.Var("beta", R.Tensor((3,), "int32"))
moving_mean1 = relax.Var("moving_mean", R.Tensor((3,), "int32"))
moving_var1 = relax.Var("moving_var", R.Tensor((3,), "int32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x0, gamma0, beta0, moving_mean0, moving_var0, axis=1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x1, gamma1, beta1, moving_mean1, moving_var1, axis=1))
def test_batch_norm_infer_struct_info_axis_out_of_range():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32"))
gamma = relax.Var("gamma", R.Tensor((3,), "float32"))
beta = relax.Var("beta", R.Tensor((3,), "float32"))
moving_mean = relax.Var("moving_mean", R.Tensor((3,), "float32"))
moving_var = relax.Var("moving_var", R.Tensor((3,), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x, gamma, beta, moving_mean, moving_var, axis=4))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x, gamma, beta, moving_mean, moving_var, axis=-5))
def test_batch_norm_infer_struct_info_dtype_mismatch():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32"))
x1 = relax.Var("x", R.Tensor((2, 3, 28, 28), "int8"))
gamma0 = relax.Var("gamma", R.Tensor((3,), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((3,)))
beta = relax.Var("beta", R.Tensor((3,), "float32"))
moving_mean = relax.Var("moving_mean", R.Tensor((3,), "float32"))
moving_var0 = relax.Var("moving_var", R.Tensor((3,), "float32"))
moving_var1 = relax.Var("moving_var", R.Tensor((3,), "float16"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x1, gamma0, beta, moving_mean, moving_var0, axis=1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x0, gamma1, beta, moving_mean, moving_var0, axis=1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x0, gamma0, beta, moving_mean, moving_var1, axis=1))
def test_batch_norm_infer_struct_info_ndim_mismatch():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32"))
gamma0 = relax.Var("gamma", R.Tensor((3,), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((3, 1), "float32"))
beta = relax.Var("beta", R.Tensor((3,), "float32"))
moving_mean = relax.Var("moving_mean", R.Tensor((3,), "float32"))
moving_var0 = relax.Var("moving_var", R.Tensor((3,), "float32"))
moving_var1 = relax.Var("moving_var", R.Tensor((1, 3), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x, gamma1, beta, moving_mean, moving_var0, axis=1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x, gamma0, beta, moving_mean, moving_var1, axis=1))
def test_batch_norm_infer_struct_info_shape_mismatch():
bb = relax.BlockBuilder()
c = tir.Var("c", "int64")
x0 = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32"))
x1 = relax.Var("x", R.Tensor((2, c, 28, 28), "float32"))
gamma0 = relax.Var("gamma", R.Tensor((3,), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((4,), "float32"))
gamma2 = relax.Var("gamma", R.Tensor((c + 2,), "float32"))
beta0 = relax.Var("beta", R.Tensor((3,), "float32"))
beta1 = relax.Var("beta", R.Tensor((c,), "float32"))
moving_mean0 = relax.Var("moving_mean", R.Tensor((3,), "float32"))
moving_mean1 = relax.Var("moving_mean", R.Tensor((c,), "float32"))
moving_var0 = relax.Var("moving_var", R.Tensor((3,), "float32"))
moving_var1 = relax.Var("moving_var", R.Tensor((4,), "float32"))
moving_var2 = relax.Var("moving_var", R.Tensor((c,), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x0, gamma1, beta0, moving_mean0, moving_var0, axis=1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x0, gamma0, beta0, moving_mean0, moving_var1, axis=1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x1, gamma2, beta1, moving_mean1, moving_var2, axis=1))
def test_batch_norm_infer_struct_info_wrong_input_type():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32"))
x1 = relax.Var("x", relax.ShapeStructInfo((2, 3, 28, 28)))
gamma0 = relax.Var("gamma", R.Tensor((3,), "float32"))
gamma1 = relax.Var("gamma", relax.FuncStructInfo([], R.Tensor((3,), "float32")))
beta = relax.Var("beta", R.Tensor((3,), "float32"))
moving_mean = relax.Var("moving_mean", R.Tensor((3,), "float32"))
moving_var = relax.Var("moving_var", R.Tensor((3,), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x1, gamma0, beta, moving_mean, moving_var, axis=1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.batch_norm(x0, gamma1, beta, moving_mean, moving_var, axis=1))
def test_layer_norm_infer_struct_info():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=4))
x2 = relax.Var("x", R.Tensor("float32"))
x3 = relax.Var("x", R.Tensor((2, 3, 4, 5)))
gamma0 = relax.Var("gamma", R.Tensor((4, 5), "float32"))
gamma1 = relax.Var("gamma", R.Tensor("float32", ndim=2))
gamma2 = relax.Var("gamma", R.Tensor((4, 5)))
beta0 = relax.Var("beta", R.Tensor((4, 5), "float32"))
beta1 = relax.Var("beta", R.Tensor((4, 5)))
_check_inference(
bb,
relax.op.nn.layer_norm(x0, gamma0, beta0, axes=[-2, -1]),
relax.TensorStructInfo((2, 3, 4, 5), "float32"),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x0, gamma0, beta0, axes=[-2, 3]),
relax.TensorStructInfo((2, 3, 4, 5), "float32"),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x1, gamma0, beta0, axes=[-2, -1]),
relax.TensorStructInfo(dtype="float32", ndim=4),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x2, gamma0, beta0, axes=[-2, -1]),
relax.TensorStructInfo(dtype="float32"),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x0, gamma1, beta0, axes=[-2, -1]),
relax.TensorStructInfo((2, 3, 4, 5), dtype="float32"),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x3, gamma2, beta1, axes=[-2, -1]),
relax.TensorStructInfo((2, 3, 4, 5), dtype=""),
)
def test_layer_norm_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
n = tir.Var("n", "int64")
a = tir.Var("a", "int64")
b = tir.Var("b", "int64")
c0 = tir.Var("c", "int64")
c1 = tir.Var("c", "int64")
x0 = relax.Var("x", R.Tensor((n, a, b, c0), "float32"))
x1 = relax.Var("x", R.Tensor((n, a, b, c1), "float32"))
x2 = relax.Var("x", R.Tensor("float32", ndim=4))
gamma0 = relax.Var("gamma", R.Tensor((b, c0), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((b, c1), "float32"))
beta = relax.Var("beta", R.Tensor((b, c0), "float32"))
_check_inference(
bb,
relax.op.nn.layer_norm(x0, gamma0, beta, axes=[-2, -1]),
relax.TensorStructInfo((n, a, b, c0), "float32"),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x1, gamma0, beta, axes=[-2, -1]),
relax.TensorStructInfo(dtype="float32", ndim=4),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x0, gamma1, beta, axes=[-2, -1]),
relax.TensorStructInfo(dtype="float32", ndim=4),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x2, gamma0, beta, axes=[-2, -1]),
relax.TensorStructInfo(dtype="float32", ndim=4),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x2, gamma1, beta, axes=[-2, -1]),
relax.TensorStructInfo(dtype="float32", ndim=4),
)
def test_layer_norm_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s0", relax.ShapeStructInfo(ndim=4))
s1 = relax.Var("s1", relax.ShapeStructInfo())
s2 = relax.Var("s2", relax.ShapeStructInfo(ndim=2))
s3 = relax.Var("s3", relax.ShapeStructInfo(ndim=2))
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
gamma = relax.Var("gamma", relax.TensorStructInfo(s2, "float32"))
beta = relax.Var("beta", relax.TensorStructInfo(s3, "float32"))
_check_inference(
bb,
relax.op.nn.layer_norm(x0, gamma, beta, axes=[2, 3]),
relax.TensorStructInfo(s0, "float32"),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x1, gamma, beta, axes=[2, 3]),
relax.TensorStructInfo(s1, "float32"),
)
def test_layer_norm_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float16"))
gamma0 = relax.Var("gamma", R.Tensor((4, 5), "float16"))
beta0 = relax.Var("beta", R.Tensor((4, 5), "float16"))
x1 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float64"))
gamma1 = relax.Var("gamma", R.Tensor((4, 5), "float64"))
beta1 = relax.Var("beta", R.Tensor((4, 5), "float64"))
_check_inference(
bb,
relax.op.nn.layer_norm(x0, gamma0, beta0, axes=[-2, -1]),
relax.TensorStructInfo((2, 3, 4, 5), "float16"),
)
_check_inference(
bb,
relax.op.nn.layer_norm(x1, gamma1, beta1, axes=[-2, -1]),
relax.TensorStructInfo((2, 3, 4, 5), "float64"),
)
def test_layer_norm_infer_struct_info_invalid_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "int8"))
gamma0 = relax.Var("gamma", R.Tensor((4, 5), "int8"))
beta0 = relax.Var("beta", R.Tensor((4, 5), "int8"))
x1 = relax.Var("x", R.Tensor((2, 3, 4, 5), "int32"))
gamma1 = relax.Var("gamma", R.Tensor((4, 5), "int32"))
beta1 = relax.Var("beta", R.Tensor((4, 5), "int32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x0, gamma0, beta0, axes=[-2, -1]))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x1, gamma1, beta1, axes=[-2, -1]))
def test_layer_norm_infer_struct_info_axis_out_of_range_and_repetitive():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
gamma = relax.Var("gamma", R.Tensor((4, 5), "float32"))
beta = relax.Var("beta", R.Tensor((4, 5), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x, gamma, beta, axes=[3, 4]))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x, gamma, beta, axes=[3, -1]))
def test_layer_norm_infer_struct_info_dtype_mismatch():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
gamma0 = relax.Var("gamma", R.Tensor((4, 5), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((4, 5), "int8"))
beta0 = relax.Var("beta", R.Tensor((4, 5), "float32"))
beta1 = relax.Var("beta", R.Tensor((4, 5)))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x, gamma1, beta0, axes=[-2, -1]))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x, gamma0, beta1, axes=[-2, -1]))
def test_layer_norm_infer_struct_info_ndim_mismatch():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
gamma0 = relax.Var("gamma", R.Tensor((4, 5), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((4,), "float32"))
beta0 = relax.Var("beta", R.Tensor((4, 5), "float32"))
beta1 = relax.Var("beta", R.Tensor((3, 4, 5), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x, gamma1, beta0, axes=[-2, -1]))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x, gamma0, beta1, axes=[-2, -1]))
def test_layer_norm_infer_struct_info_shape_mismatch():
bb = relax.BlockBuilder()
c0 = tir.Var("c", "int64")
x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
x1 = relax.Var("x", R.Tensor((2, 3, 4, c0), "float32"))
gamma0 = relax.Var("gamma", R.Tensor((4, 6), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((4, c0), "float32"))
beta0 = relax.Var("beta", R.Tensor((4, 5), "float32"))
beta1 = relax.Var("beta", R.Tensor((4, c0 - 2), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x0, gamma0, beta0, axes=[-2, -1]))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x1, gamma1, beta1, axes=[-2, -1]))
def test_layer_norm_infer_struct_info_wrong_input_type():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
x1 = relax.Var("x", relax.ShapeStructInfo((2, 3, 4, 5)))
gamma0 = relax.Var("gamma", R.Tensor((4, 5), "float32"))
gamma1 = relax.Var("gamma", relax.FuncStructInfo([], R.Tensor((4, 5), "float32")))
beta = relax.Var("beta", R.Tensor((4, 5), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x1, gamma0, beta, axes=[-2, -1]))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.layer_norm(x0, gamma1, beta, axes=[-2, -1]))
def test_group_norm_infer_struct_info():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=4))
x2 = relax.Var("x", R.Tensor("float32"))
x3 = relax.Var("x", R.Tensor((2, 3, 4, 5)))
gamma0 = relax.Var("gamma", R.Tensor((4,), "float32"))
gamma1 = relax.Var("gamma", R.Tensor("float32", ndim=1))
gamma2 = relax.Var("gamma", R.Tensor((4,)))
beta0 = relax.Var("beta", R.Tensor((4,), "float32"))
beta1 = relax.Var("beta", R.Tensor((4,)))
_check_inference(
bb,
relax.op.nn.group_norm(x0, gamma0, beta0, num_groups=2, channel_axis=-2, axes=[-1]),
relax.TensorStructInfo((2, 3, 4, 5), "float32"),
)
_check_inference(
bb,
relax.op.nn.group_norm(x0, gamma0, beta0, num_groups=2, channel_axis=-2, axes=[-1]),
relax.TensorStructInfo((2, 3, 4, 5), "float32"),
)
_check_inference(
bb,
relax.op.nn.group_norm(x1, gamma0, beta0, num_groups=2, channel_axis=-2, axes=[-1]),
relax.TensorStructInfo(dtype="float32", ndim=4),
)
_check_inference(
bb,
relax.op.nn.group_norm(x2, gamma0, beta0, num_groups=2, channel_axis=-2, axes=[-1]),
relax.TensorStructInfo(dtype="float32"),
)
_check_inference(
bb,
relax.op.nn.group_norm(x0, gamma1, beta0, num_groups=2, channel_axis=-2, axes=[-1]),
relax.TensorStructInfo((2, 3, 4, 5), dtype="float32"),
)
_check_inference(
bb,
relax.op.nn.group_norm(x3, gamma2, beta1, num_groups=2, channel_axis=-2, axes=[-1]),
relax.TensorStructInfo((2, 3, 4, 5), dtype=""),
)
def test_group_norm_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
n = tir.Var("n", "int64")
a = tir.Var("a", "int64")
b = tir.Var("b", "int64")
c0 = tir.Var("c", "int64")
c1 = tir.Var("c", "int64")
x0 = relax.Var("x", R.Tensor((n, a, b, c0), "float32"))
x1 = relax.Var("x", R.Tensor((n, a, b, c1), "float32"))
x2 = relax.Var("x", R.Tensor("float32", ndim=4))
gamma0 = relax.Var("gamma", R.Tensor((a,), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((a,), "float32"))
beta = relax.Var("beta", R.Tensor((a,), "float32"))
_check_inference(
bb,
relax.op.nn.group_norm(x0, gamma0, beta, num_groups=2, channel_axis=-3, axes=[-2, -1]),
relax.TensorStructInfo((n, a, b, c0), "float32"),
)
_check_inference(
bb,
relax.op.nn.group_norm(x1, gamma0, beta, num_groups=2, channel_axis=-3, axes=[-2, -1]),
relax.TensorStructInfo((n, a, b, c1), "float32"),
)
_check_inference(
bb,
relax.op.nn.group_norm(x0, gamma1, beta, num_groups=2, channel_axis=-3, axes=[-2, -1]),
relax.TensorStructInfo((n, a, b, c0), "float32"),
)
_check_inference(
bb,
relax.op.nn.group_norm(x2, gamma0, beta, num_groups=2, channel_axis=-3, axes=[-2, -1]),
relax.TensorStructInfo(dtype="float32", ndim=4),
)
_check_inference(
bb,
relax.op.nn.group_norm(x2, gamma1, beta, num_groups=2, channel_axis=-3, axes=[-2, -1]),
relax.TensorStructInfo(dtype="float32", ndim=4),
)
def test_group_norm_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s0", relax.ShapeStructInfo(ndim=4))
s1 = relax.Var("s1", relax.ShapeStructInfo())
s2 = relax.Var("s2", relax.ShapeStructInfo(ndim=1))
s3 = relax.Var("s3", relax.ShapeStructInfo(ndim=1))
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
gamma = relax.Var("gamma", relax.TensorStructInfo(s2, "float32"))
beta = relax.Var("beta", relax.TensorStructInfo(s3, "float32"))
_check_inference(
bb,
relax.op.nn.group_norm(x0, gamma, beta, num_groups=2, channel_axis=-2, axes=[1, 3]),
relax.TensorStructInfo(s0, "float32"),
)
_check_inference(
bb,
relax.op.nn.group_norm(x1, gamma, beta, num_groups=2, channel_axis=-2, axes=[1, 3]),
relax.TensorStructInfo(s1, "float32"),
)
def test_group_norm_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float16"))
gamma0 = relax.Var("gamma", R.Tensor((3,), "float16"))
beta0 = relax.Var("beta", R.Tensor((3,), "float16"))
x1 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float64"))
gamma1 = relax.Var("gamma", R.Tensor((3,), "float64"))
beta1 = relax.Var("beta", R.Tensor((3,), "float64"))
_check_inference(
bb,
relax.op.nn.group_norm(x0, gamma0, beta0, num_groups=3, channel_axis=1, axes=[-2, -1]),
relax.TensorStructInfo((2, 3, 4, 5), "float16"),
)
_check_inference(
bb,
relax.op.nn.group_norm(x1, gamma1, beta1, num_groups=3, channel_axis=1, axes=[-2, -1]),
relax.TensorStructInfo((2, 3, 4, 5), "float64"),
)
def test_group_norm_infer_struct_info_invalid_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "int8"))
gamma0 = relax.Var("gamma", R.Tensor((4,), "int8"))
beta0 = relax.Var("beta", R.Tensor((4,), "int8"))
x1 = relax.Var("x", R.Tensor((2, 3, 4, 5), "int32"))
gamma1 = relax.Var("gamma", R.Tensor((4,), "int32"))
beta1 = relax.Var("beta", R.Tensor((4,), "int32"))
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x0, gamma0, beta0, num_groups=2, channel_axis=-2, axes=[-2, -1])
)
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x1, gamma1, beta1, num_groups=2, channel_axis=-2, axes=[-2, -1])
)
def test_group_norm_infer_struct_info_axis_out_of_range_and_repetitive():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
gamma = relax.Var("gamma", R.Tensor((4,), "float32"))
beta = relax.Var("beta", R.Tensor((4,), "float32"))
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x, gamma, beta, num_groups=2, channel_axis=-2, axes=[3, 4])
)
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x, gamma, beta, num_groups=2, channel_axis=-2, axes=[3, -1])
)
def test_group_norm_infer_struct_info_dtype_mismatch():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
gamma0 = relax.Var("gamma", R.Tensor((4,), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((4,), "int8"))
beta0 = relax.Var("beta", R.Tensor((4,), "float32"))
beta1 = relax.Var("beta", R.Tensor((4,)))
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x, gamma1, beta0, num_groups=2, channel_axis=-2, axes=[-2, -1])
)
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x, gamma0, beta1, num_groups=2, channel_axis=-2, axes=[-2, -1])
)
def test_group_norm_infer_struct_info_ndim_mismatch():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
gamma0 = relax.Var("gamma", R.Tensor((4, 5), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((4,), "float32"))
beta0 = relax.Var("beta", R.Tensor((4, 5), "float32"))
beta1 = relax.Var("beta", R.Tensor((3, 4, 5), "float32"))
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x, gamma1, beta0, num_groups=2, channel_axis=-2, axes=[-2, -1])
)
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x, gamma0, beta1, num_groups=2, channel_axis=-2, axes=[-2, -1])
)
def test_group_norm_infer_struct_info_shape_mismatch():
bb = relax.BlockBuilder()
c0 = tir.Var("c", "int64")
x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
x1 = relax.Var("x", R.Tensor((2, 3, 4, c0), "float32"))
gamma0 = relax.Var("gamma", R.Tensor((4, 6), "float32"))
gamma1 = relax.Var("gamma", R.Tensor((4, c0), "float32"))
beta0 = relax.Var("beta", R.Tensor((4, 5), "float32"))
beta1 = relax.Var("beta", R.Tensor((4, c0 - 2), "float32"))
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x0, gamma0, beta0, num_groups=2, channel_axis=-2, axes=[-2, -1])
)
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x1, gamma1, beta1, num_groups=2, channel_axis=-2, axes=[-2, -1])
)
def test_group_norm_infer_struct_info_wrong_input_type():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3, 4, 5), "float32"))
x1 = relax.Var("x", relax.ShapeStructInfo((2, 3, 4, 5)))
gamma0 = relax.Var("gamma", R.Tensor((4, 5), "float32"))
gamma1 = relax.Var("gamma", relax.FuncStructInfo([], R.Tensor((4, 5), "float32")))
beta = relax.Var("beta", R.Tensor((4, 5), "float32"))
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x1, gamma0, beta, num_groups=2, channel_axis=-2, axes=[-2, -1])
)
with pytest.raises(TVMError):
bb.normalize(
relax.op.nn.group_norm(x0, gamma1, beta, num_groups=2, channel_axis=-2, axes=[-2, -1])
)
def test_dropout_infer_struct_info():
bb = relax.BlockBuilder()
vdev0 = VDevice("llvm")
x0 = relax.Var("x", R.Tensor((2, 3), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=3))
x2 = relax.Var("x", R.Tensor("float32", ndim=-1))
x3 = relax.Var("x", R.Tensor((2, 3)))
x4 = relax.Var("x", R.Tensor())
x5 = relax.Var("x", R.Tensor((2, 3), "float32", vdev0))
_check_inference(
bb,
relax.op.nn.dropout(x0),
relax.TupleStructInfo(
[relax.TensorStructInfo((2, 3), "float32"), relax.TensorStructInfo((2, 3), "float32")]
),
)
_check_inference(
bb,
relax.op.nn.dropout(x5),
relax.TupleStructInfo(
[
relax.TensorStructInfo((2, 3), "float32", vdev0),
relax.TensorStructInfo((2, 3), "float32", vdev0),
]
),
)
_check_inference(
bb,
relax.op.nn.dropout(x1),
relax.TupleStructInfo(
[
relax.TensorStructInfo(dtype="float32", ndim=3),
relax.TensorStructInfo(dtype="float32", ndim=3),
]
),
)
_check_inference(
bb,
relax.op.nn.dropout(x2),
relax.TupleStructInfo(
[relax.TensorStructInfo(dtype="float32"), relax.TensorStructInfo(dtype="float32")]
),
)
_check_inference(
bb,
relax.op.nn.dropout(x3),
relax.TupleStructInfo(
[relax.TensorStructInfo((2, 3), dtype=""), relax.TensorStructInfo((2, 3), dtype="")]
),
)
_check_inference(
bb,
relax.op.nn.dropout(x4),
relax.TupleStructInfo([relax.TensorStructInfo(dtype=""), relax.TensorStructInfo(dtype="")]),
)
def test_dropout_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
m = tir.Var("m", "int64")
n = tir.Var("n", "int64")
x = relax.Var("x", R.Tensor((m, n), "float32"))
_check_inference(
bb,
relax.op.nn.dropout(x),
relax.TupleStructInfo(
[relax.TensorStructInfo((m, n), "float32"), relax.TensorStructInfo((m, n), "float32")]
),
)
def test_dropout_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s", relax.ShapeStructInfo(ndim=2))
s1 = relax.Var("s", relax.ShapeStructInfo())
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
_check_inference(
bb,
relax.op.nn.dropout(x0),
relax.TupleStructInfo(
[relax.TensorStructInfo(s0, "float32"), relax.TensorStructInfo(s0, "float32")]
),
)
_check_inference(
bb,
relax.op.nn.dropout(x1),
relax.TupleStructInfo(
[relax.TensorStructInfo(s1, "float32"), relax.TensorStructInfo(s1, "float32")]
),
)
def test_dropout_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float64"))
x1 = relax.Var("x", R.Tensor((2, 3), "int8"))
x2 = relax.Var("x", R.Tensor((2, 3), "int64"))
_check_inference(
bb,
relax.op.nn.dropout(x0),
relax.TupleStructInfo(
[relax.TensorStructInfo((2, 3), "float64"), relax.TensorStructInfo((2, 3), "float64")]
),
)
_check_inference(
bb,
relax.op.nn.dropout(x1),
relax.TupleStructInfo(
[relax.TensorStructInfo((2, 3), "int8"), relax.TensorStructInfo((2, 3), "int8")]
),
)
_check_inference(
bb,
relax.op.nn.dropout(x2),
relax.TupleStructInfo(
[relax.TensorStructInfo((2, 3), "int64"), relax.TensorStructInfo((2, 3), "int64")]
),
)
def test_dropout_infer_struct_info_wrong_input_type():
bb = relax.BlockBuilder()
x0 = relax.Var("x", relax.ShapeStructInfo((2, 3)))
x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3), "float32")))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.dropout(x0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.dropout(x1))
def test_cross_entropy_infer_struct_info():
bb = relax.BlockBuilder()
vdev0 = VDevice("llvm")
x = relax.Var("x", R.Tensor((2, 3), "float32"))
y0 = relax.Var("y", R.Tensor((2, 3), "float32"))
y1 = relax.Var("y", R.Tensor("float32", ndim=2))
y2 = relax.Var("y", R.Tensor((2, 3)))
y3 = relax.Var("y", R.Tensor(ndim=2))
_check_inference(
bb, relax.op.nn.cross_entropy_with_logits(x, y0), relax.TensorStructInfo((), "float32")
)
_check_inference(
bb,
relax.op.nn.cross_entropy_with_logits(x, y1),
relax.TensorStructInfo((), dtype="float32"),
)
_check_inference(
bb, relax.op.nn.cross_entropy_with_logits(x, y2), relax.TensorStructInfo((), dtype="")
)
_check_inference(
bb, relax.op.nn.cross_entropy_with_logits(x, y3), relax.TensorStructInfo((), dtype="")
)
def test_cross_entropy_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
m0 = tir.Var("m", "int64")
m1 = tir.Var("m", "int64")
n = tir.Var("n", "int64")
x0 = relax.Var("x", R.Tensor((m0, n), "float32"))
x1 = relax.Var("x", R.Tensor((m1, n), "float32"))
y = relax.Var("y", R.Tensor((m0, n), "float32"))
_check_inference(
bb, relax.op.nn.cross_entropy_with_logits(x0, y), relax.TensorStructInfo((), "float32")
)
_check_inference(
bb, relax.op.nn.cross_entropy_with_logits(x1, y), relax.TensorStructInfo((), "float32")
)
def test_cross_entropy_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s", relax.ShapeStructInfo(ndim=2))
s1 = relax.Var("s", relax.ShapeStructInfo(ndim=2))
x = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
y0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
y1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
_check_inference(
bb, relax.op.nn.cross_entropy_with_logits(x, y0), relax.TensorStructInfo((), "float32")
)
_check_inference(
bb, relax.op.nn.cross_entropy_with_logits(x, y1), relax.TensorStructInfo((), "float32")
)
def test_cross_entropy_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float16"))
y0 = relax.Var("y", R.Tensor((2, 3), "float16"))
x1 = relax.Var("x", R.Tensor((2, 3), "int8"))
y1 = relax.Var("y", R.Tensor((2, 3), "int8"))
x2 = relax.Var("x", R.Tensor((2, 3), "int32"))
y2 = relax.Var("y", R.Tensor((2, 3), "int32"))
_check_inference(
bb, relax.op.nn.cross_entropy_with_logits(x0, y0), relax.TensorStructInfo((), "float16")
)
_check_inference(
bb, relax.op.nn.cross_entropy_with_logits(x1, y1), relax.TensorStructInfo((), "int8")
)
def test_cross_entropy_infer_struct_info_wrong_ndim():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((2, 3), "float32"))
x1 = relax.Var("x", R.Tensor((2, 3, 4), "float32"))
y0 = relax.Var("y", R.Tensor((2, 3), "float32"))
y1 = relax.Var("y", R.Tensor("float32", ndim=4))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.cross_entropy_with_logits(x1, y0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.cross_entropy_with_logits(x0, y1))
def test_cross_entropy_infer_struct_info_shape_mismatch():
bb = relax.BlockBuilder()
m = tir.Var("m", "int64")
x0 = relax.Var("x", R.Tensor((2, 3), "float32"))
y0 = relax.Var("y", R.Tensor((2, 4), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.cross_entropy_with_logits(x0, y0))
def test_cross_entropy_infer_struct_info_wrong_input_type():
bb = relax.BlockBuilder()
x0 = relax.Var("x", relax.ShapeStructInfo((2, 3)))
x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3), "float32")))
y = relax.Var("y", R.Tensor((2, 3), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.cross_entropy_with_logits(x0, y))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.cross_entropy_with_logits(x1, y))
def test_nll_loss_infer_struct_info():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((3, 5, 10, 10), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=4))
x2 = relax.Var("x", R.Tensor("float32"))
x3 = relax.Var("x", R.Tensor((3, 5, 10, 10)))
x4 = relax.Var("x", R.Tensor((3, 5), "float32")) # (N, C)
x5 = relax.Var("x", R.Tensor((5,), "float32")) # (C,)
y0 = relax.Var("y", R.Tensor((3, 10, 10), "int64"))
y1 = relax.Var("y", R.Tensor("int64", ndim=3))
y2 = relax.Var("y", R.Tensor("int64"))
y3 = relax.Var("y", R.Tensor((3, 10, 10)))
y4 = relax.Var("y", R.Tensor((3,))) # (N,)
y5 = relax.Var("y", R.Tensor(())) # ()
w0 = relax.Var("w", R.Tensor((5,), "float32"))
w1 = relax.Var("w", R.Tensor("float32", ndim=1))
w2 = relax.Var("w", R.Tensor("float32"))
w3 = relax.Var("w", R.Tensor((5,)))
# reduction = mean
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w0, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x1, y0, w0, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x2, y0, w0, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x3, y0, w0, reduction="mean"),
relax.TensorStructInfo((), ""),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y1, w0, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y2, w0, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y3, w0, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w1, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w2, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w3, reduction="mean"),
relax.TensorStructInfo((), ""),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x4, y4, w0, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x5, y5, w0, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
# reduction=sum is totally the same as mean. Just need one test to ensure they behave the same
_check_inference(
bb, relax.op.nn.nll_loss(x0, y0, w0, reduction="sum"), relax.TensorStructInfo((), "float32")
)
# reduction=none
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w0, reduction="none"),
relax.TensorStructInfo((3, 10, 10), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x1, y0, w0, reduction="none"),
relax.TensorStructInfo(dtype="float32", ndim=3),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x2, y0, w0, reduction="none"),
relax.TensorStructInfo(dtype="float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x3, y0, w0, reduction="none"),
relax.TensorStructInfo((3, 10, 10), ""),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y1, w0, reduction="none"),
relax.TensorStructInfo((3, 10, 10), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y2, w0, reduction="none"),
relax.TensorStructInfo((3, 10, 10), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y3, w0, reduction="none"),
relax.TensorStructInfo((3, 10, 10), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w1, reduction="none"),
relax.TensorStructInfo((3, 10, 10), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w2, reduction="none"),
relax.TensorStructInfo((3, 10, 10), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w3, reduction="none"),
relax.TensorStructInfo((3, 10, 10), ""),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x4, y4, w0, reduction="none"),
relax.TensorStructInfo((3,), "float32"), # (N,)
)
_check_inference(
bb,
relax.op.nn.nll_loss(x5, y5, w0, reduction="none"),
relax.TensorStructInfo((), "float32"), # ()
)
def test_nll_loss_infer_struct_info_shape_symbolic():
bb = relax.BlockBuilder()
N = tir.Var("N", "int64")
C = tir.Var("C", "int64")
d1 = tir.Var("d", "int64")
d2 = tir.Var("d", "int64")
x0 = relax.Var("x", R.Tensor((N, C, d1, d2), "float32"))
x1 = relax.Var("x", R.Tensor((N, C), "float32"))
x2 = relax.Var("x", R.Tensor((C,), "float32"))
x3 = relax.Var("x", R.Tensor((3, C, d1, 2), "float32"))
y0 = relax.Var("y", R.Tensor((N, d1, d2), "int64"))
y1 = relax.Var("y", R.Tensor((N,), "int64"))
y2 = relax.Var("y", R.Tensor((), "int64"))
y3 = relax.Var("y", R.Tensor((3, d1, 2), "int64"))
w0 = relax.Var("w", R.Tensor((C,), "float32"))
w1 = relax.Var("w", R.Tensor((5,), "float32"))
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w0, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w0, reduction="none"),
relax.TensorStructInfo((N, d1, d2), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x1, y1, w0, reduction="none"),
relax.TensorStructInfo((N,), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x2, y2, w0, reduction="none"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x3, y3, w0, reduction="none"),
relax.TensorStructInfo((3, d1, 2), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x3, y3, w1, reduction="none"),
relax.TensorStructInfo((3, d1, 2), "float32"),
)
def test_nll_loss_infer_struct_info_shape_var():
bb = relax.BlockBuilder()
s0 = relax.Var("s0", relax.ShapeStructInfo((3, 5, 10, 10)))
s1 = relax.Var("s1", relax.ShapeStructInfo(ndim=4))
s2 = relax.Var("s2", relax.ShapeStructInfo())
s3 = relax.Var("s3", relax.ShapeStructInfo((3, 10, 10)))
s4 = relax.Var("s4", relax.ShapeStructInfo(ndim=3))
s5 = relax.Var("s5", relax.ShapeStructInfo((5,)))
s6 = relax.Var("s6", relax.ShapeStructInfo(ndim=1))
x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32"))
x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32"))
x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32"))
y0 = relax.Var("y", relax.TensorStructInfo(s3, "int64"))
y1 = relax.Var("y", relax.TensorStructInfo(s4, "int64"))
w0 = relax.Var("w", relax.TensorStructInfo(s5, "float32"))
w1 = relax.Var("w", relax.TensorStructInfo(s6, "float32"))
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w0, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w0, reduction="none"),
relax.TensorStructInfo(dtype="float32", ndim=3),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x1, y0, w0, reduction="none"),
relax.TensorStructInfo(dtype="float32", ndim=3),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x2, y0, w0, reduction="none"),
relax.TensorStructInfo(dtype="float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y1, w0, reduction="none"),
relax.TensorStructInfo(dtype="float32", ndim=3),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w1, reduction="none"),
relax.TensorStructInfo(dtype="float32", ndim=3),
)
def test_nll_loss_infer_struct_info_no_weights():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((3, 5, 10, 10), "float32"))
y = relax.Var("x", R.Tensor((3, 10, 10), "int64"))
_check_inference(
bb,
relax.op.nn.nll_loss(x, y, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x, y, reduction="none"),
relax.TensorStructInfo((3, 10, 10), "float32"),
)
def test_nll_loss_infer_struct_info_no_weights_symbolic():
N = tir.Var("N", "int64")
C = tir.Var("C", "int64")
d1 = tir.Var("d", "int64")
d2 = tir.Var("d", "int64")
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((N, C, d1, d2), "float32"))
y = relax.Var("y", R.Tensor((N, d1, d2), "int64"))
_check_inference(
bb,
relax.op.nn.nll_loss(x, y, reduction="mean"),
relax.TensorStructInfo((), "float32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x, y, reduction="none"),
relax.TensorStructInfo((N, d1, d2), "float32"),
)
def test_nll_loss_infer_struct_info_wrong_input_type():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((3, 5, 10, 10), "float32"))
x1 = relax.Var("x", relax.ShapeStructInfo((2, 3)))
x2 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3), "float32")))
y0 = relax.Var("y", R.Tensor((3, 10, 10), "int64"))
y1 = relax.Var("y", relax.ShapeStructInfo((2, 3)))
y2 = relax.Var("y", relax.FuncStructInfo([], R.Tensor((2, 3), "float32")))
w0 = relax.Var("w", R.Tensor((5,), "float32"))
w1 = relax.Var("w", relax.ShapeStructInfo((2, 3)))
w2 = relax.Var("w", relax.FuncStructInfo([], R.Tensor((2, 3), "float32")))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x1, y0, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x2, y0, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y1, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y2, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y0, w1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y0, w2))
def test_nll_loss_infer_struct_info_more_input_dtype():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((3, 5, 10, 10), "float16"))
x1 = relax.Var("x", R.Tensor((3, 5, 10, 10), "int8"))
x2 = relax.Var("x", R.Tensor((3, 5, 10, 10), "int32"))
x3 = relax.Var("x", R.Tensor((3, 5, 10, 10), "float64"))
y0 = relax.Var("y", R.Tensor((3, 10, 10), "int8"))
w0 = relax.Var("y", R.Tensor((5,), "float16"))
w1 = relax.Var("y", R.Tensor((5,), "int8"))
w2 = relax.Var("y", R.Tensor((5,), "int32"))
w3 = relax.Var("y", R.Tensor((5,), "float64"))
_check_inference(
bb,
relax.op.nn.nll_loss(x0, y0, w0, reduction="mean"),
relax.TensorStructInfo((), "float16"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x1, y0, w1, reduction="mean"),
relax.TensorStructInfo((), "int8"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x2, y0, w2, reduction="mean"),
relax.TensorStructInfo((), "int32"),
)
_check_inference(
bb,
relax.op.nn.nll_loss(x3, y0, w3, reduction="mean"),
relax.TensorStructInfo((), "float64"),
)
def test_nll_loss_infer_struct_info_targets_dtype():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((3, 5, 10, 10), "float32"))
w = relax.Var("w", R.Tensor((5,), "float32"))
targets0 = relax.Var("targets", R.Tensor((3, 10, 10), "float32"))
targets1 = relax.Var("targets", R.Tensor((3, 10, 10), "float64"))
targets2 = relax.Var("targets", R.Tensor((3, 10, 10), "bool"))
targets3 = relax.Var("targets", R.Tensor((3, 10, 10), "int32"))
targets4 = relax.Var("targets", R.Tensor((3, 10, 10), "int64"))
targets5 = relax.Var("targets", R.Tensor((3, 10, 10), "uint32"))
targets6 = relax.Var("targets", R.Tensor((3, 10, 10), ""))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x, targets0, w))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x, targets1, w))
# correct cases
bb.normalize(relax.op.nn.nll_loss(x, targets2, w)) # bool is uint1
bb.normalize(relax.op.nn.nll_loss(x, targets3, w))
bb.normalize(relax.op.nn.nll_loss(x, targets4, w))
bb.normalize(relax.op.nn.nll_loss(x, targets5, w))
bb.normalize(relax.op.nn.nll_loss(x, targets6, w)) # unknwon dtype
def test_nll_loss_infer_struct_info_ndim_mismatch():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((3, 5, 10, 10), "float32"))
x1 = relax.Var("x", R.Tensor((3, 5, 10, 10, 10), "float32"))
x2 = relax.Var("x", R.Tensor((3, 5, 10), "float32"))
y0 = relax.Var("x", R.Tensor((3, 10, 10), "int64"))
y1 = relax.Var("x", R.Tensor((3, 10, 10, 10), "int64"))
y2 = relax.Var("x", R.Tensor((3, 10), "int64"))
w0 = relax.Var("w", R.Tensor((5,), "float32"))
w1 = relax.Var("w", R.Tensor((5, 5), "float32"))
w2 = relax.Var("w", R.Tensor((), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x1, y0, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x2, y0, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y1, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y2, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y0, w1))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y0, w2))
def test_nll_loss_infer_struct_info_shape_mismatch():
bb = relax.BlockBuilder()
x0 = relax.Var("x", R.Tensor((3, 5, 10, 10), "float32"))
x1 = relax.Var("x", R.Tensor((3, 6, 10, 10), "float32"))
x2 = relax.Var("x", R.Tensor((4, 5, 10, 10), "float32"))
x3 = relax.Var("x", R.Tensor((3, 5, 11, 10), "float32"))
y0 = relax.Var("x", R.Tensor((3, 10, 10), "int64"))
y1 = relax.Var("x", R.Tensor((4, 10, 10), "int64"))
y2 = relax.Var("x", R.Tensor((3, 11, 10), "int64"))
w0 = relax.Var("w", R.Tensor((5,), "float32"))
w1 = relax.Var("w", R.Tensor((4,), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x1, y0, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x2, y0, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x3, y0, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y1, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y2, w0))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x0, y0, w1))
def test_nll_loss_infer_struct_info_wrong_reduction():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((3, 5, 10, 10), "float32"))
y = relax.Var("x", R.Tensor((3, 10, 10), "int64"))
w = relax.Var("w", R.Tensor((5,), "float32"))
with pytest.raises(TVMError):
bb.normalize(relax.op.nn.nll_loss(x, y, w, reduction="foo"))
def test_pad_infer_struct_info():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((2, 3), "float32"))
x1 = relax.Var("x", R.Tensor("float32", ndim=2))
pad_width0 = (0, 0, 0, 0)
pad_width1 = (1, 1, 1, 1)
pad_width2 = (0, 1, 1, 0)
_check_inference(bb, relax.op.nn.pad(x, pad_width0), relax.TensorStructInfo((2, 3), "float32"))
_check_inference(
bb,
relax.op.nn.pad(x, pad_width1),
relax.TensorStructInfo((4, 5), dtype="float32"),
)
_check_inference(
bb,
relax.op.nn.pad(x, pad_width2),
relax.TensorStructInfo((3, 4), dtype="float32"),
)
_check_inference(
bb, relax.op.nn.pad(x1, pad_width1), relax.TensorStructInfo(dtype="float32", ndim=2)
)
def test_pixel_shuffle_infer_struct_info():
bb = relax.BlockBuilder()
x1 = relax.Var("x1", R.Tensor((1, 8, 10, 15), "float32"))
x2 = relax.Var("x2", R.Tensor((2, 6, 18, 5, 4), "float32"))
upscale_factor1 = 2
_check_inference(
bb,
relax.op.nn.pixel_shuffle(x1, upscale_factor1),
relax.TensorStructInfo((1, 2, 20, 30), dtype="float32"),
)
upscale_factor2 = 3
_check_inference(
bb,
relax.op.nn.pixel_shuffle(x2, upscale_factor2),
relax.TensorStructInfo((2, 6, 2, 15, 12), dtype="float32"),
)
if __name__ == "__main__":
tvm.testing.main()