| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import pytest |
| import tvm |
| import tvm.testing |
| from tvm import relax, tir |
| from tvm import TVMError |
| from tvm.ir import Op, VDevice |
| from tvm.script import relax as R |
| |
| |
| def test_op_correctness(): |
| x = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| assert relax.op.image.resize2d(x, (28, 28)).op == Op.get("relax.image.resize2d") |
| |
| |
| def _check_inference(bb: relax.BlockBuilder, call: relax.Call, expected_sinfo: relax.StructInfo): |
| ret = bb.normalize(call) |
| tvm.ir.assert_structural_equal(ret.struct_info, expected_sinfo) |
| |
| |
| def test_resize2d_infer_struct_info(): |
| bb = relax.BlockBuilder() |
| vdev0 = VDevice("llvm") |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor((2, 32, 32, 3), "float32")) |
| x2 = relax.Var("x", R.Tensor((2, 4, 32, 32, 16), "float32")) |
| x3 = relax.Var("x", R.Tensor("float32", ndim=4)) |
| x4 = relax.Var("x", R.Tensor("float32", ndim=5)) |
| x5 = relax.Var("x", R.Tensor("float32")) |
| x6 = relax.Var("x", R.Tensor(ndim=4)) |
| x7 = relax.Var("x", R.Tensor()) |
| x8 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32", vdev0)) |
| |
| _check_inference( |
| bb, relax.op.image.resize2d(x0, (28, 28)), relax.TensorStructInfo((2, 3, 28, 28), "float32") |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x8, (28, 28)), |
| relax.TensorStructInfo((2, 3, 28, 28), "float32", vdev0), |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x0, size=28), |
| relax.TensorStructInfo((2, 3, 28, 28), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x0, size=(28, 30)), |
| relax.TensorStructInfo((2, 3, 28, 30), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x1, size=28, layout="NHWC"), |
| relax.TensorStructInfo((2, 28, 28, 3), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x0, size=28, out_dtype="float16"), |
| relax.TensorStructInfo((2, 3, 28, 28), "float16"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x2, size=28, layout="NCHW16c"), |
| relax.TensorStructInfo((2, 4, 28, 28, 16), "float32"), |
| ) |
| _check_inference( |
| bb, relax.op.image.resize2d(x3, size=28), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x4, size=28, layout="NCHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=5), |
| ) |
| _check_inference( |
| bb, relax.op.image.resize2d(x5, size=28), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference( |
| bb, relax.op.image.resize2d(x6, size=28), relax.TensorStructInfo(dtype="", ndim=4) |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x6, size=28, out_dtype="float32"), |
| relax.TensorStructInfo(dtype="float32", ndim=4), |
| ) |
| _check_inference( |
| bb, relax.op.image.resize2d(x7, size=28), relax.TensorStructInfo(dtype="", ndim=4) |
| ) |
| |
| |
| def test_resize2d_infer_struct_info_shape_symbolic(): |
| bb = relax.BlockBuilder() |
| n = tir.Var("n", "int64") |
| c = tir.Var("c", "int64") |
| ih = tir.Var("ih", "int64") |
| iw = tir.Var("iw", "int64") |
| oh = tir.Var("oh", "int64") |
| ow = tir.Var("ow", "int64") |
| x0 = relax.Var("x", R.Tensor((n, c, ih, iw), "float32")) |
| x1 = relax.Var("x", R.Tensor((n, c, ih, iw, 16), "float32")) |
| |
| _check_inference( |
| bb, relax.op.image.resize2d(x0, size=oh), relax.TensorStructInfo((n, c, oh, oh), "float32") |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x0, size=(oh, ow)), |
| relax.TensorStructInfo((n, c, oh, ow), "float32"), |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x1, size=(oh, ow), layout="NCHW16c"), |
| relax.TensorStructInfo((n, c, oh, ow, 16), "float32"), |
| ) |
| |
| |
| def test_resize2d_infer_struct_info_shape_var(): |
| bb = relax.BlockBuilder() |
| s0 = relax.Var("s", relax.ShapeStructInfo(ndim=4)) |
| s1 = relax.Var("s", relax.ShapeStructInfo(ndim=5)) |
| s2 = relax.Var("s", relax.ShapeStructInfo()) |
| x0 = relax.Var("x", relax.TensorStructInfo(s0, "float32")) |
| x1 = relax.Var("x", relax.TensorStructInfo(s1, "float32")) |
| x2 = relax.Var("x", relax.TensorStructInfo(s2, "float32")) |
| |
| _check_inference( |
| bb, relax.op.image.resize2d(x0, size=32), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x1, size=32, layout="NCHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=5), |
| ) |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x2, size=32, layout="NCHW16c"), |
| relax.TensorStructInfo(dtype="float32", ndim=5), |
| ) |
| |
| |
| def test_resize2d_infer_struct_info_pool_size_var(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| s0 = relax.Var("s", relax.ShapeStructInfo((30, 30))) |
| s1 = relax.Var("s", relax.ShapeStructInfo(ndim=2)) |
| |
| _check_inference( |
| bb, |
| relax.op.image.resize2d(x0, s0), |
| relax.TensorStructInfo(dtype="float32", ndim=4), |
| ) |
| _check_inference( |
| bb, relax.op.image.resize2d(x0, s1), relax.TensorStructInfo(dtype="float32", ndim=4) |
| ) |
| |
| |
| def test_resize2d_infer_struct_info_more_input_dtype(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float16")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 32, 32), "int8")) |
| x2 = relax.Var("x", R.Tensor((2, 3, 32, 32), "int64")) |
| _check_inference( |
| bb, relax.op.image.resize2d(x0, size=28), relax.TensorStructInfo((2, 3, 28, 28), "float16") |
| ) |
| _check_inference( |
| bb, relax.op.image.resize2d(x1, size=28), relax.TensorStructInfo((2, 3, 28, 28), "int8") |
| ) |
| _check_inference( |
| bb, relax.op.image.resize2d(x2, size=28), relax.TensorStructInfo((2, 3, 28, 28), "int64") |
| ) |
| |
| |
| def test_resize2d_infer_struct_info_wrong_layout_string(): |
| bb = relax.BlockBuilder() |
| x = relax.Var("x", R.Tensor((2, 3, 28, 28), "float32")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x, size=28, layout="OIHW")) |
| |
| |
| def test_resize2d_wrong_input_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| x1 = relax.Var("x", R.Tensor((2, 3, 32, 32, 3), "float32")) |
| x2 = relax.Var("x", R.Tensor("float32", ndim=3)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x0, size=28, layout="NCHW16c")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x1, size=28, layout="NCHW")) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x2, size=28)) |
| |
| |
| def test_resize2d_wrong_pool_size_ndim(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float16")) |
| s0 = relax.ShapeExpr((3,)) |
| s1 = relax.Var("s", relax.ShapeStructInfo((30, 30, 30))) |
| s2 = relax.Var("s", relax.ShapeStructInfo(ndim=3)) |
| s3 = relax.Var("s", relax.ShapeStructInfo(ndim=1)) |
| s4 = relax.Var("s", relax.ShapeStructInfo(ndim=0)) |
| s5 = relax.Var("s", relax.ShapeStructInfo()) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x0, (3, 3, 3))) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x0, s0)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x0, s1)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x0, s2)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x0, s3)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x0, s4)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x0, s5)) |
| |
| |
| def test_resize2d_infer_struct_info_wrong_input_type(): |
| bb = relax.BlockBuilder() |
| x0 = relax.Var("x", relax.ShapeStructInfo((2, 3, 28, 28))) |
| x1 = relax.Var("x", relax.FuncStructInfo([], R.Tensor((2, 3, 28, 28), "float32"))) |
| x2 = relax.Var("x", R.Tensor((2, 3, 32, 32), "float32")) |
| s0 = relax.Var("s", R.Tensor((3, 3))) |
| |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x0, size=32)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x1, size=32)) |
| with pytest.raises(TVMError): |
| bb.normalize(relax.op.image.resize2d(x2, s0)) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |