| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| # type: ignore |
| from tvm.script.parser import ir as I |
| from tvm.script.parser import relax as R |
| import tvm |
| from tvm import relax |
| import tvm.testing |
| |
| |
| def test_simple(): |
| @I.ir_module |
| class Before: |
| I.module_attrs({"device_num": 2}) |
| I.module_global_infos({"mesh": [R.device_mesh((2,), I.Range(0, 2))]}) |
| |
| @R.function |
| def foo( |
| x1: R.DTensor((128, 128), "float32", "mesh[0]", "R"), |
| x2: R.DTensor((128, 128), "float32", "mesh[0]", "S[0]"), |
| ): |
| R.func_attr({"num_input": 1}) |
| # scatter |
| lv0 = R.dist.redistribute(x1, "mesh[0]", "S[1]") |
| # do nothing |
| lv1 = R.dist.redistribute(x2, "mesh[0]", "S[0]") |
| return (lv0, lv1) |
| |
| @I.ir_module |
| class Expected: |
| I.module_attrs({"device_num": 2}) |
| I.module_global_infos({"mesh": [R.device_mesh((2,), I.Range(0, 2))]}) |
| |
| @R.function |
| def foo( |
| x1: R.DTensor((128, 128), "float32", "mesh[0]", "R"), |
| x2: R.DTensor((128, 128), "float32", "mesh[0]", "S[0]"), |
| ) -> R.Tuple( |
| R.DTensor((128, 128), "float32", "mesh[0]", "S[1]"), |
| R.DTensor((128, 128), "float32", "mesh[0]", "S[0]"), |
| ): |
| R.func_attr({"num_input": 1}) |
| lv0: R.DTensor( |
| (128, 128), "float32", "mesh[0]", "S[1]" |
| ) = R.dist.redistribute_replica_to_shard(x1, num_workers=2, axis=1) |
| lv1: R.DTensor((128, 128), "float32", "mesh[0]", "S[0]") = x2 |
| return (lv0, lv1) |
| |
| after = relax.distributed.transform.LegalizeRedistribute()(Before) |
| tvm.ir.assert_structural_equal(after, Expected) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |