| #!/usr/bin/env python3 |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import numpy as np |
| |
| import tvm |
| import tvm.testing |
| from tvm import relax, te |
| from tvm.runtime import Executable |
| from tvm.script import ir as I |
| from tvm.script import relax as R |
| from tvm.script import tir as T |
| |
| |
| def test_compile_tir(): |
| """Test tvm.compile with TIR input.""" |
| n = te.var("n") |
| A = te.placeholder((n,), name="A") |
| B = te.placeholder((n,), name="B") |
| C = te.compute(A.shape, lambda i: A[i] + B[i], name="C") |
| func = te.create_prim_func([A, B, C]) |
| |
| # Test compile with PrimFunc |
| exec_prim = tvm.compile(func) |
| assert isinstance(exec_prim, Executable) |
| |
| # Test compile with IRModule containing PrimFunc |
| mod = tvm.IRModule.from_expr(func) |
| exec_mod = tvm.compile(mod) |
| assert isinstance(exec_mod, Executable) |
| |
| # Verify the compiled module works |
| dev = tvm.cpu(0) |
| a_np = np.random.uniform(size=10).astype(np.float32) |
| b_np = np.random.uniform(size=10).astype(np.float32) |
| a = tvm.runtime.tensor(a_np, dev) |
| b = tvm.runtime.tensor(b_np, dev) |
| c = tvm.runtime.tensor(np.zeros(10, dtype=np.float32), dev) |
| |
| exec_prim(a, b, c) |
| np.testing.assert_allclose(c.numpy(), a_np + b_np) |
| exec_mod(a, b, c) |
| np.testing.assert_allclose(c.numpy(), a_np + b_np) |
| |
| |
| def test_compile_relax(): |
| """Test tvm.compile with Relax input.""" |
| |
| # Define a simple Relax program |
| @I.ir_module |
| class MyModule: |
| @R.function |
| def main(x: R.Tensor((3, 4), "float32"), y: R.Tensor((3, 4), "float32")) -> R.Tensor: |
| z = R.add(x, y) |
| return z |
| |
| # Test compile with Relax module |
| target = tvm.target.Target("llvm") |
| exec_relax = tvm.compile(MyModule, target) |
| assert isinstance(exec_relax, Executable) |
| |
| # Verify the compiled module works |
| dev = tvm.cpu(0) |
| x_np = np.random.uniform(size=(3, 4)).astype(np.float32) |
| y_np = np.random.uniform(size=(3, 4)).astype(np.float32) |
| x = tvm.runtime.tensor(x_np, dev) |
| y = tvm.runtime.tensor(y_np, dev) |
| |
| vm = relax.VirtualMachine(exec_relax, dev) |
| z = vm["main"](x, y) |
| np.testing.assert_allclose(z.numpy(), x_np + y_np) |
| |
| |
| @tvm.testing.skip_if_32bit(reason="skipping test for i386.") |
| def test_compile_mixed_module(): |
| @tvm.script.ir_module |
| class MyModule: |
| @T.prim_func |
| def add_one(X: T.Buffer((4,), "float32"), Y: T.Buffer((4,), "float32")): |
| for i in range(4): |
| Y[i] = X[i] + 1 |
| |
| @R.function |
| def main(x: R.Tensor((4,), "float32")): |
| cls = MyModule |
| with R.dataflow(): |
| y = R.call_tir(cls.add_one, [x], R.Tensor((4,), "float32")) |
| return y |
| |
| # Test with custom pipeline |
| target = tvm.target.Target("c") |
| ex = tvm.compile(MyModule, target) |
| assert isinstance(ex, Executable) |
| |
| dev = tvm.cpu(0) |
| x = tvm.runtime.tensor(np.array([1, 2, 3, 4], dtype=np.float32), dev) |
| y = tvm.runtime.tensor(np.zeros(4, dtype=np.float32), dev) |
| # For tir function, we can directly call the function |
| ex["add_one"](x, y) |
| np.testing.assert_allclose(y.numpy(), x.numpy() + 1) |
| # For relax function, we need to use the vm to call the function |
| vm = relax.VirtualMachine(ex, dev) |
| z = vm["main"](x) |
| np.testing.assert_allclose(z.numpy(), x.numpy() + 1) |
| |
| |
| if __name__ == "__main__": |
| tvm.testing.main() |