| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import tvm |
| import tvm.testing |
| from tvm import te |
| import numpy as np |
| from tvm.contrib.dlpack import to_pytorch_func |
| |
| |
| def verify_torch_dlpack(): |
| a = np.random.randn(1337) |
| tvm_a = tvm.runtime.tensor(a) |
| np.testing.assert_equal(tvm.runtime.from_dlpack(tvm_a).numpy(), a) |
| |
| try: |
| import torch |
| import torch.utils.dlpack |
| |
| x = torch.rand(56, 56) |
| tvm_x = tvm.runtime.from_dlpack(torch.utils.dlpack.to_dlpack(x)) |
| np.testing.assert_equal(x.numpy(), tvm_x.numpy()) |
| y = tvm.runtime.from_dlpack(tvm_x) |
| np.testing.assert_equal(y.numpy(), tvm_x.numpy()) |
| np.testing.assert_equal(torch.utils.dlpack.from_dlpack(y).numpy(), tvm_x.numpy()) |
| |
| n = tvm.runtime.convert(137) |
| xx = torch.rand(137, 137) |
| yy = torch.rand(137, 137) |
| zz2 = torch.empty(137, 137) |
| zz = xx.mm(yy) |
| XX = te.placeholder((n, n), name="X") |
| YY = te.placeholder((n, n), name="Y") |
| |
| k = te.reduce_axis((0, n), name="k") |
| ZZ = te.compute((n, n), lambda i, j: te.sum(XX[i, k] * YY[k, j], axis=k)) |
| # No need to speficy target_host if it's llvm |
| # Otherwise you will need to specify the target and target_host |
| f = tvm.compile(te.create_prim_func([XX, YY, ZZ])) |
| |
| f_pytorch = to_pytorch_func(f) |
| zz2 = torch.empty(137, 137) |
| f_pytorch(xx, yy, zz2) |
| tvm.testing.assert_allclose(zz.numpy(), zz2.numpy(), rtol=1e-4, atol=1e-4) |
| |
| except ImportError: |
| pass |
| |
| |
| def test_torch_dlpack(): |
| # Run dlpack interoperability test a few times to make sure it's stable. |
| for i in range(5): |
| verify_torch_dlpack() |
| |
| |
| if __name__ == "__main__": |
| test_torch_dlpack() |