blob: 38212d9705236ff3cdef86d494a73c46cebf5632 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Test code for QNN operators."""
import numpy as np
import tvm
from tvm import topi, relay, te
from tvm.contrib import graph_executor
import tvm.topi.testing
def verify_simulated_quantize(data_shape, out_dtype, channels, axis):
# Create placeholder variables for all qnn inputs.
A = te.placeholder(data_shape, name="value", dtype="float32")
D = te.placeholder([], name="dtype", dtype="int32")
S = te.placeholder([te.size_var("scale_dim")], name="scale", dtype="float32")
Z = te.placeholder([te.size_var("zp_dim")], name="zp", dtype="int32")
SIM_Q = topi.nn.simulated_quantize(A, D, output_scale=S, output_zero_point=Z, axis=axis)
# Create random numpy values to assign to inputs.
a_np = np.random.uniform(size=data_shape).astype("float32")
d_np = np.int32(topi.nn.SQNN_DTYPE_TO_CODE[out_dtype])
s_np = np.random.uniform(low=1e-4, high=0.1, size=channels).astype("float32")
z_np = np.random.uniform(low=-10, high=10, size=channels).astype("int32")
q_np = np.zeros(shape=data_shape, dtype="float32")
def check_target(target, dev):
# Wrap the numpy arrays in nd arrays.
a = tvm.nd.array(a_np, dev)
d = tvm.nd.array(d_np, dev)
s = tvm.nd.array(s_np, dev)
z = tvm.nd.array(z_np, dev)
q = tvm.nd.array(q_np, dev)
# Construct equivalent relay graph.
per_channel = channels[0] != 1
a_var = relay.var("a", shape=data_shape, dtype="float32")
if per_channel:
s_var = relay.const(s_np)
z_var = relay.const(z_np)
else:
s_var = relay.const(s_np[0])
z_var = relay.const(z_np[0])
real_q_op = relay.qnn.quantize(a_var, s_var, z_var, axis=axis, out_dtype=out_dtype)
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(tvm.IRModule.from_expr(real_q_op), target=target)
# Get real qnn quantize output.
m = graph_executor.GraphModule(lib["default"](dev))
m.set_input("a", a_np)
m.run()
real_q_out = m.get_output(0)
# Compile the simulated quantize function.
with tvm.target.Target(target):
sched = tvm.topi.testing.get_injective_schedule(target)(SIM_Q)
func = tvm.build(sched, [A, D, S, Z, SIM_Q], target, name="sim_quantize")
func(a, d, s, z, q)
# Check correctness against the true qnn output.
mismatch = q.numpy() != real_q_out.numpy().astype("float32")
# Allow some rounding errors due to GPU fp32 arithmetic.
assert np.sum(mismatch) <= 3
for target, dev in tvm.testing.enabled_targets():
check_target(target, dev)
def test_simulated_quantize():
verify_simulated_quantize([1], "int8", [1], -1)
verify_simulated_quantize([2, 5], "int8", [5], 1)
verify_simulated_quantize([1, 32, 32, 32], "int8", [32], -1)
verify_simulated_quantize([1, 32, 32, 32], "uint8", [32], -2)
verify_simulated_quantize([2, 5], "int32", [5], 1)
def verify_simulated_dequantize(data_shape, in_dtype, channels, axis):
# Create placeholder variables for all qnn inputs.
A = te.placeholder(data_shape, name="value", dtype="float32")
D = te.placeholder([], name="dtype", dtype="int32")
S = te.placeholder([te.size_var("scale_dim")], name="scale", dtype="float32")
Z = te.placeholder([te.size_var("zp_dim")], name="zp", dtype="int32")
SIM_DQ = topi.nn.simulated_dequantize(A, D, input_scale=S, input_zero_point=Z, axis=axis)
# Create random numpy values to assign to inputs.
a_np = np.random.uniform(low=-128, high=127, size=data_shape).astype(in_dtype)
a_np_f = a_np.astype("float32")
d_np = np.int32(topi.nn.SQNN_DTYPE_TO_CODE[in_dtype])
s_np = np.random.uniform(low=1e-4, high=0.1, size=channels).astype("float32")
z_np = np.random.uniform(low=-10, high=10, size=channels).astype("int32")
dq_np = np.zeros(shape=data_shape, dtype="float32")
def check_target(target, dev):
# Wrap the numpy arrays in nd arrays.
a = tvm.nd.array(a_np_f, dev)
d = tvm.nd.array(d_np, dev)
s = tvm.nd.array(s_np, dev)
z = tvm.nd.array(z_np, dev)
dq = tvm.nd.array(dq_np, dev)
# Construct equivalent relay graph.
per_channel = channels[0] != 1
a_var = relay.var("a", shape=data_shape, dtype=in_dtype)
if per_channel:
s_var = relay.const(s_np)
z_var = relay.const(z_np)
else:
s_var = relay.const(s_np[0])
z_var = relay.const(z_np[0])
real_dq_op = relay.qnn.dequantize(a_var, s_var, z_var, axis=axis)
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(tvm.IRModule.from_expr(real_dq_op), target=target)
# Get real qnn quantize output.
m = graph_executor.GraphModule(lib["default"](dev))
m.set_input("a", a_np)
m.run()
real_dq_out = m.get_output(0)
# Compile the simulated quantize function.
with tvm.target.Target(target):
sched = tvm.topi.testing.get_injective_schedule(target)(SIM_DQ)
func = tvm.build(sched, [A, D, S, Z, SIM_DQ], target, name="sim_quantize")
func(a, d, s, z, dq)
# Check correctness against the true qnn output.
tvm.testing.assert_allclose(dq.numpy(), real_dq_out.numpy().astype("float32"), rtol=1e-5)
for target, dev in tvm.testing.enabled_targets():
check_target(target, dev)
def test_simulated_dequantize():
verify_simulated_dequantize([1], "int8", [1], -1)
verify_simulated_dequantize([2, 5], "int8", [5], 1)
verify_simulated_dequantize([2, 5], "int8", [2], 0)
verify_simulated_dequantize([1, 32, 32, 32], "int8", [32], -1)
verify_simulated_dequantize([1, 32, 32, 32], "uint8", [32], -2)
verify_simulated_dequantize([2, 5], "int32", [5], 1)
if __name__ == "__main__":
test_simulated_quantize()
test_simulated_dequantize()