| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| """Test for NCHW[x]c convolution""" |
| |
| import numpy as np |
| import tvm |
| from tvm import te |
| from tvm import autotvm |
| from tvm import topi |
| import tvm.testing |
| import tvm.topi.testing |
| from tvm.contrib.pickle_memoize import memoize |
| from tvm.topi.nn.utils import get_pad_tuple |
| from tvm.topi.utils import get_const_tuple |
| |
| |
| def _transform_data(data, bn): |
| # NCHW -> NCHW[x]c |
| batch_size, channel, height, width = data.shape |
| data = np.reshape(data, (batch_size, channel // bn, bn, height, width)) |
| data = np.transpose(data, (0, 1, 3, 4, 2)) |
| return data |
| |
| |
| def _transform_kernel(kernel, ic_bn, oc_bn): |
| # OIHW -> OIHW[x]i[x]o |
| out_channel, in_channel, kh, kw = kernel.shape |
| kernel = np.reshape(kernel, (out_channel // oc_bn, oc_bn, in_channel // ic_bn, ic_bn, kh, kw)) |
| kernel = np.transpose(kernel, (0, 2, 4, 5, 3, 1)) |
| return kernel |
| |
| |
| def _transform_bias(bias, bn): |
| # [num_filter, 1, 1] -> [num_filter//bn, 1, 1, bn] |
| num_filter, h, w = bias.shape |
| bias = np.reshape(bias, (num_filter // bn, bn, h, w)) |
| bias = np.transpose(bias, (0, 2, 3, 1)) |
| return bias |
| |
| |
| def verify_conv2d_NCHWc( |
| batch, |
| in_channel, |
| in_size, |
| num_filter, |
| kernel, |
| stride, |
| padding, |
| dilation=1, |
| add_bias=False, |
| add_relu=False, |
| groups=1, |
| dtype="float32", |
| ): |
| pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(padding, (kernel, kernel)) |
| padding_sum = pad_top + pad_left + pad_bottom + pad_right |
| in_height = in_width = in_size |
| print( |
| "Workload: (%d, %d, %d, %d, %d, %d, %d)" |
| % (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum) |
| ) |
| |
| # for testing functionality, |
| # we choose arbitrary block size that can divide the channel, |
| # regardless of the performance. |
| oc_block = 1 |
| for bn in range(16, 0, -1): |
| if num_filter % bn == 0: |
| oc_block = bn |
| break |
| |
| ic_block = 1 |
| for bn in range(oc_block, 0, -1): |
| if in_channel % bn == 0: |
| ic_block = bn |
| break |
| |
| A = te.placeholder((batch, in_channel // ic_block, in_height, in_width, ic_block), name="A") |
| W = te.placeholder( |
| ( |
| num_filter // oc_block, |
| in_channel // ic_block // groups, |
| kernel, |
| kernel, |
| ic_block, |
| oc_block, |
| ), |
| name="W", |
| ) |
| bias = te.placeholder((num_filter // oc_block, 1, 1, oc_block), name="bias") |
| |
| @memoize("topi.tests.test_topi_conv2d_NCHWc.verify_conv2d_NCHWc") |
| def get_ref_data(): |
| a_np = np.random.uniform(size=(batch, in_channel, in_height, in_width)).astype(dtype) |
| w_np = np.random.uniform(size=(num_filter, in_channel // groups, kernel, kernel)).astype( |
| dtype |
| ) |
| b_np = np.random.uniform(size=(num_filter, 1, 1)).astype(dtype) |
| dw_np = tvm.topi.testing.dilate_python(w_np, (1, 1, dilation, dilation)) |
| c_np = tvm.topi.testing.conv2d_nchw_python(a_np, dw_np, stride, padding, groups) |
| if add_bias: |
| c_np += b_np |
| if add_relu: |
| c_np = np.maximum(c_np, 0) |
| return ( |
| _transform_data(a_np, ic_block), |
| _transform_kernel(w_np, ic_block, oc_block), |
| _transform_bias(b_np, oc_block), |
| _transform_data(c_np, oc_block), |
| ) |
| |
| a_np, w_np, b_np, c_np = get_ref_data() |
| |
| def check_device(device): |
| dev = tvm.device(device, 0) |
| if not tvm.testing.device_enabled(device): |
| print("Skip because %s is not enabled" % device) |
| return |
| print("Running on target: %s" % device) |
| with tvm.target.Target(device): |
| C = topi.x86.conv2d_NCHWc( |
| A, |
| W, |
| (stride, stride), |
| padding, |
| (dilation, dilation), |
| "NCHW%dc" % ic_block, |
| "NCHW%dc" % oc_block, |
| dtype, |
| ) |
| if add_bias: |
| C = topi.add(C, bias) |
| if add_relu: |
| C = topi.nn.relu(C) |
| s = topi.x86.schedule_conv2d_NCHWc([C]) |
| |
| a = tvm.nd.array(a_np, dev) |
| w = tvm.nd.array(w_np, dev) |
| b = tvm.nd.array(b_np, dev) |
| c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), dev) |
| if add_bias: |
| func = tvm.build( |
| s, |
| [A, W, bias, C], |
| device, |
| name="relu_%d_%d_%d_%d_%d_%d_%d_%d" |
| % (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation), |
| ) |
| func(a, w, b, c) |
| else: |
| func = tvm.build( |
| s, |
| [A, W, C], |
| device, |
| name="relu_%d_%d_%d_%d_%d_%d_%d_%d" |
| % (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation), |
| ) |
| func(a, w, c) |
| tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-3) |
| |
| # test llvm only for now since conv2d_NCHWc implement is missing in other backend. |
| for device in ["llvm"]: |
| with autotvm.tophub.context(device): # load tophub pre-tuned parameters |
| check_device(device) |
| |
| |
| def test_conv2d_NCHWc(): |
| # ResNet18 workloads |
| verify_conv2d_NCHWc(1, 3, 224, 64, 7, 2, 3) |
| verify_conv2d_NCHWc(1, 64, 56, 64, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 64, 56, 64, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 64, 56, 128, 3, 2, 1) |
| verify_conv2d_NCHWc(1, 64, 56, 128, 1, 2, 0) |
| verify_conv2d_NCHWc(1, 128, 28, 128, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 128, 28, 256, 3, 2, 1) |
| verify_conv2d_NCHWc(1, 128, 28, 256, 1, 2, 0) |
| verify_conv2d_NCHWc(1, 256, 14, 256, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 256, 14, 512, 3, 2, 1) |
| verify_conv2d_NCHWc(1, 256, 14, 512, 1, 2, 0) |
| verify_conv2d_NCHWc(1, 512, 7, 512, 3, 1, 1) |
| |
| # bias, relu |
| verify_conv2d_NCHWc(1, 64, 56, 64, 3, 1, 1, add_relu=True) |
| verify_conv2d_NCHWc(1, 64, 56, 64, 3, 1, 1, add_bias=True) |
| verify_conv2d_NCHWc(1, 64, 56, 64, 3, 1, 1, add_bias=True, add_relu=True) |
| |
| # dilation |
| verify_conv2d_NCHWc(1, 64, 56, 64, 3, 1, 1, dilation=2) |
| |
| # batch size |
| verify_conv2d_NCHWc(4, 64, 56, 64, 3, 1, 1) |
| verify_conv2d_NCHWc(9, 64, 56, 64, 3, 1, 1) |
| |
| # groups |
| verify_conv2d_NCHWc(1, 2048, 10, 2048, 3, 1, 1, groups=128) |
| |
| # weird workloads |
| verify_conv2d_NCHWc(2, 2, 2, 2, 2, 2, 2) |
| verify_conv2d_NCHWc(3, 3, 3, 3, 3, 3, 3) |
| verify_conv2d_NCHWc(4, 4, 4, 4, 4, 4, 4) |
| verify_conv2d_NCHWc(5, 5, 5, 5, 5, 5, 5) |
| verify_conv2d_NCHWc(6, 6, 6, 6, 6, 6, 6) |
| |
| # disable these tests due to some bugs of llvm with nvptx |
| # verify_conv2d_NCHWc(1, 1, 1, 1, 1, 1, 1, dilation=1) |
| # verify_conv2d_NCHWc(1, 1, 1, 1, 1, 1, 1, dilation=2) |
| # verify_conv2d_NCHWc(2, 13, 71, 59, 3, 1, 1) |
| |
| # inception v3 workloads |
| verify_conv2d_NCHWc(1, 3, 299, 32, 3, 2, 0) |
| verify_conv2d_NCHWc(1, 32, 149, 32, 3, 1, 0) |
| verify_conv2d_NCHWc(1, 32, 147, 64, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 64, 73, 80, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 80, 73, 192, 3, 1, 0) |
| verify_conv2d_NCHWc(1, 192, 35, 64, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 192, 35, 48, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 48, 35, 64, 5, 1, 2) |
| verify_conv2d_NCHWc(1, 64, 35, 96, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 96, 35, 96, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 192, 35, 32, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 256, 35, 64, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 256, 35, 48, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 288, 35, 64, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 288, 35, 48, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 288, 35, 384, 3, 2, 0) |
| verify_conv2d_NCHWc(1, 96, 35, 96, 3, 2, 0) |
| verify_conv2d_NCHWc(1, 768, 17, 192, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 768, 17, 128, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 128, 17, 128, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 128, 17, 192, 7, 1, 3) |
| verify_conv2d_NCHWc(1, 128, 17, 128, 7, 1, 3) |
| verify_conv2d_NCHWc(1, 128, 17, 192, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 768, 17, 160, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 160, 17, 160, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 160, 17, 192, 7, 1, 3) |
| verify_conv2d_NCHWc(1, 160, 17, 160, 7, 1, 3) |
| verify_conv2d_NCHWc(1, 160, 17, 192, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 192, 17, 192, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 192, 17, 192, 7, 1, 3) |
| verify_conv2d_NCHWc(1, 192, 17, 320, 3, 2, 0) |
| verify_conv2d_NCHWc(1, 192, 17, 192, 3, 2, 0) |
| verify_conv2d_NCHWc(1, 1280, 8, 320, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 1280, 8, 384, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 384, 8, 384, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 384, 8, 384, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 1280, 8, 448, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 448, 8, 384, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 1280, 8, 192, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 2048, 8, 320, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 2048, 8, 384, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 2048, 8, 448, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 2048, 8, 192, 1, 1, 0) |
| verify_conv2d_NCHWc(1, 1024, 19, 84, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 2048, 10, 126, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 512, 5, 126, 3, 1, 1) |
| verify_conv2d_NCHWc(1, 256, 3, 126, 3, 1, 1) |
| |
| # Asymmetric padding |
| verify_conv2d_NCHWc(1, 32, 17, 64, 7, 2, (0, 0, 1, 1)) |
| verify_conv2d_NCHWc(1, 32, 35, 128, 3, 1, (3, 3, 2, 2)) |
| verify_conv2d_NCHWc(1, 32, 35, 32, 1, 1, (1, 2, 2, 1)) |
| verify_conv2d_NCHWc(1, 32, 17, 192, 1, 1, (1, 2)) |
| verify_conv2d_NCHWc(1, 32, 8, 32, 3, 1, (3, 1)) |
| verify_conv2d_NCHWc(1, 128, 8, 384, 3, 1, (0, 2)) |
| verify_conv2d_NCHWc(1, 32, 8, 32, 1, 1, "VALID") |
| verify_conv2d_NCHWc(1, 388, 8, 32, 3, 1, "VALID") |
| verify_conv2d_NCHWc(1, 512, 19, 32, 1, 1, "SAME") |
| verify_conv2d_NCHWc(1, 32, 10, 32, 2, 1, "SAME") |
| verify_conv2d_NCHWc(1, 32, 8, 32, 3, 1, (1, 2, 2, 1), add_relu=True) |
| verify_conv2d_NCHWc(1, 32, 8, 32, 5, 2, (1, 3), add_bias=True) |
| verify_conv2d_NCHWc(1, 32, 8, 32, 3, 1, "VALID", add_bias=True, add_relu=True) |
| verify_conv2d_NCHWc(1, 32, 8, 32, 24, 1, "SAME", add_bias=True, add_relu=True) |
| |
| |
| if __name__ == "__main__": |
| test_conv2d_NCHWc() |