blob: 007f2a5c6a16cf0e652e936169dcd19a85c63f55 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Test for NCHW[x]c convolution"""
import numpy as np
import tvm
from tvm import te
from tvm import autotvm
from tvm import topi
import tvm.testing
import tvm.topi.testing
from tvm.contrib.pickle_memoize import memoize
from tvm.topi.nn.utils import get_pad_tuple
from tvm.topi.utils import get_const_tuple
def _transform_data(data, bn):
# NCHW -> NCHW[x]c
batch_size, channel, height, width = data.shape
data = np.reshape(data, (batch_size, channel // bn, bn, height, width))
data = np.transpose(data, (0, 1, 3, 4, 2))
return data
def _transform_kernel(kernel, ic_bn, oc_bn):
# OIHW -> OIHW[x]i[x]o
out_channel, in_channel, kh, kw = kernel.shape
kernel = np.reshape(kernel, (out_channel // oc_bn, oc_bn, in_channel // ic_bn, ic_bn, kh, kw))
kernel = np.transpose(kernel, (0, 2, 4, 5, 3, 1))
return kernel
def _transform_bias(bias, bn):
# [num_filter, 1, 1] -> [num_filter//bn, 1, 1, bn]
num_filter, h, w = bias.shape
bias = np.reshape(bias, (num_filter // bn, bn, h, w))
bias = np.transpose(bias, (0, 2, 3, 1))
return bias
def verify_conv2d_NCHWc(
batch,
in_channel,
in_size,
num_filter,
kernel,
stride,
padding,
dilation=1,
add_bias=False,
add_relu=False,
groups=1,
dtype="float32",
):
pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(padding, (kernel, kernel))
padding_sum = pad_top + pad_left + pad_bottom + pad_right
in_height = in_width = in_size
print(
"Workload: (%d, %d, %d, %d, %d, %d, %d)"
% (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum)
)
# for testing functionality,
# we choose arbitrary block size that can divide the channel,
# regardless of the performance.
oc_block = 1
for bn in range(16, 0, -1):
if num_filter % bn == 0:
oc_block = bn
break
ic_block = 1
for bn in range(oc_block, 0, -1):
if in_channel % bn == 0:
ic_block = bn
break
A = te.placeholder((batch, in_channel // ic_block, in_height, in_width, ic_block), name="A")
W = te.placeholder(
(
num_filter // oc_block,
in_channel // ic_block // groups,
kernel,
kernel,
ic_block,
oc_block,
),
name="W",
)
bias = te.placeholder((num_filter // oc_block, 1, 1, oc_block), name="bias")
@memoize("topi.tests.test_topi_conv2d_NCHWc.verify_conv2d_NCHWc")
def get_ref_data():
a_np = np.random.uniform(size=(batch, in_channel, in_height, in_width)).astype(dtype)
w_np = np.random.uniform(size=(num_filter, in_channel // groups, kernel, kernel)).astype(
dtype
)
b_np = np.random.uniform(size=(num_filter, 1, 1)).astype(dtype)
dw_np = tvm.topi.testing.dilate_python(w_np, (1, 1, dilation, dilation))
c_np = tvm.topi.testing.conv2d_nchw_python(a_np, dw_np, stride, padding, groups)
if add_bias:
c_np += b_np
if add_relu:
c_np = np.maximum(c_np, 0)
return (
_transform_data(a_np, ic_block),
_transform_kernel(w_np, ic_block, oc_block),
_transform_bias(b_np, oc_block),
_transform_data(c_np, oc_block),
)
a_np, w_np, b_np, c_np = get_ref_data()
def check_device(device):
dev = tvm.device(device, 0)
if not tvm.testing.device_enabled(device):
print("Skip because %s is not enabled" % device)
return
print("Running on target: %s" % device)
with tvm.target.Target(device):
C = topi.x86.conv2d_NCHWc(
A,
W,
(stride, stride),
padding,
(dilation, dilation),
"NCHW%dc" % ic_block,
"NCHW%dc" % oc_block,
dtype,
)
if add_bias:
C = topi.add(C, bias)
if add_relu:
C = topi.nn.relu(C)
s = topi.x86.schedule_conv2d_NCHWc([C])
a = tvm.nd.array(a_np, dev)
w = tvm.nd.array(w_np, dev)
b = tvm.nd.array(b_np, dev)
c = tvm.nd.array(np.zeros(get_const_tuple(C.shape), dtype=C.dtype), dev)
if add_bias:
func = tvm.build(
s,
[A, W, bias, C],
device,
name="relu_%d_%d_%d_%d_%d_%d_%d_%d"
% (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation),
)
func(a, w, b, c)
else:
func = tvm.build(
s,
[A, W, C],
device,
name="relu_%d_%d_%d_%d_%d_%d_%d_%d"
% (batch, in_channel, in_size, num_filter, kernel, stride, padding_sum, dilation),
)
func(a, w, c)
tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-3)
# test llvm only for now since conv2d_NCHWc implement is missing in other backend.
for device in ["llvm"]:
with autotvm.tophub.context(device): # load tophub pre-tuned parameters
check_device(device)
def test_conv2d_NCHWc():
# ResNet18 workloads
verify_conv2d_NCHWc(1, 3, 224, 64, 7, 2, 3)
verify_conv2d_NCHWc(1, 64, 56, 64, 3, 1, 1)
verify_conv2d_NCHWc(1, 64, 56, 64, 1, 1, 0)
verify_conv2d_NCHWc(1, 64, 56, 128, 3, 2, 1)
verify_conv2d_NCHWc(1, 64, 56, 128, 1, 2, 0)
verify_conv2d_NCHWc(1, 128, 28, 128, 3, 1, 1)
verify_conv2d_NCHWc(1, 128, 28, 256, 3, 2, 1)
verify_conv2d_NCHWc(1, 128, 28, 256, 1, 2, 0)
verify_conv2d_NCHWc(1, 256, 14, 256, 3, 1, 1)
verify_conv2d_NCHWc(1, 256, 14, 512, 3, 2, 1)
verify_conv2d_NCHWc(1, 256, 14, 512, 1, 2, 0)
verify_conv2d_NCHWc(1, 512, 7, 512, 3, 1, 1)
# bias, relu
verify_conv2d_NCHWc(1, 64, 56, 64, 3, 1, 1, add_relu=True)
verify_conv2d_NCHWc(1, 64, 56, 64, 3, 1, 1, add_bias=True)
verify_conv2d_NCHWc(1, 64, 56, 64, 3, 1, 1, add_bias=True, add_relu=True)
# dilation
verify_conv2d_NCHWc(1, 64, 56, 64, 3, 1, 1, dilation=2)
# batch size
verify_conv2d_NCHWc(4, 64, 56, 64, 3, 1, 1)
verify_conv2d_NCHWc(9, 64, 56, 64, 3, 1, 1)
# groups
verify_conv2d_NCHWc(1, 2048, 10, 2048, 3, 1, 1, groups=128)
# weird workloads
verify_conv2d_NCHWc(2, 2, 2, 2, 2, 2, 2)
verify_conv2d_NCHWc(3, 3, 3, 3, 3, 3, 3)
verify_conv2d_NCHWc(4, 4, 4, 4, 4, 4, 4)
verify_conv2d_NCHWc(5, 5, 5, 5, 5, 5, 5)
verify_conv2d_NCHWc(6, 6, 6, 6, 6, 6, 6)
# disable these tests due to some bugs of llvm with nvptx
# verify_conv2d_NCHWc(1, 1, 1, 1, 1, 1, 1, dilation=1)
# verify_conv2d_NCHWc(1, 1, 1, 1, 1, 1, 1, dilation=2)
# verify_conv2d_NCHWc(2, 13, 71, 59, 3, 1, 1)
# inception v3 workloads
verify_conv2d_NCHWc(1, 3, 299, 32, 3, 2, 0)
verify_conv2d_NCHWc(1, 32, 149, 32, 3, 1, 0)
verify_conv2d_NCHWc(1, 32, 147, 64, 3, 1, 1)
verify_conv2d_NCHWc(1, 64, 73, 80, 1, 1, 0)
verify_conv2d_NCHWc(1, 80, 73, 192, 3, 1, 0)
verify_conv2d_NCHWc(1, 192, 35, 64, 1, 1, 0)
verify_conv2d_NCHWc(1, 192, 35, 48, 1, 1, 0)
verify_conv2d_NCHWc(1, 48, 35, 64, 5, 1, 2)
verify_conv2d_NCHWc(1, 64, 35, 96, 3, 1, 1)
verify_conv2d_NCHWc(1, 96, 35, 96, 3, 1, 1)
verify_conv2d_NCHWc(1, 192, 35, 32, 1, 1, 0)
verify_conv2d_NCHWc(1, 256, 35, 64, 1, 1, 0)
verify_conv2d_NCHWc(1, 256, 35, 48, 1, 1, 0)
verify_conv2d_NCHWc(1, 288, 35, 64, 1, 1, 0)
verify_conv2d_NCHWc(1, 288, 35, 48, 1, 1, 0)
verify_conv2d_NCHWc(1, 288, 35, 384, 3, 2, 0)
verify_conv2d_NCHWc(1, 96, 35, 96, 3, 2, 0)
verify_conv2d_NCHWc(1, 768, 17, 192, 1, 1, 0)
verify_conv2d_NCHWc(1, 768, 17, 128, 1, 1, 0)
verify_conv2d_NCHWc(1, 128, 17, 128, 1, 1, 0)
verify_conv2d_NCHWc(1, 128, 17, 192, 7, 1, 3)
verify_conv2d_NCHWc(1, 128, 17, 128, 7, 1, 3)
verify_conv2d_NCHWc(1, 128, 17, 192, 1, 1, 0)
verify_conv2d_NCHWc(1, 768, 17, 160, 1, 1, 0)
verify_conv2d_NCHWc(1, 160, 17, 160, 1, 1, 0)
verify_conv2d_NCHWc(1, 160, 17, 192, 7, 1, 3)
verify_conv2d_NCHWc(1, 160, 17, 160, 7, 1, 3)
verify_conv2d_NCHWc(1, 160, 17, 192, 1, 1, 0)
verify_conv2d_NCHWc(1, 192, 17, 192, 1, 1, 0)
verify_conv2d_NCHWc(1, 192, 17, 192, 7, 1, 3)
verify_conv2d_NCHWc(1, 192, 17, 320, 3, 2, 0)
verify_conv2d_NCHWc(1, 192, 17, 192, 3, 2, 0)
verify_conv2d_NCHWc(1, 1280, 8, 320, 1, 1, 0)
verify_conv2d_NCHWc(1, 1280, 8, 384, 1, 1, 0)
verify_conv2d_NCHWc(1, 384, 8, 384, 1, 1, 0)
verify_conv2d_NCHWc(1, 384, 8, 384, 3, 1, 1)
verify_conv2d_NCHWc(1, 1280, 8, 448, 1, 1, 0)
verify_conv2d_NCHWc(1, 448, 8, 384, 3, 1, 1)
verify_conv2d_NCHWc(1, 1280, 8, 192, 1, 1, 0)
verify_conv2d_NCHWc(1, 2048, 8, 320, 1, 1, 0)
verify_conv2d_NCHWc(1, 2048, 8, 384, 1, 1, 0)
verify_conv2d_NCHWc(1, 2048, 8, 448, 1, 1, 0)
verify_conv2d_NCHWc(1, 2048, 8, 192, 1, 1, 0)
verify_conv2d_NCHWc(1, 1024, 19, 84, 3, 1, 1)
verify_conv2d_NCHWc(1, 2048, 10, 126, 3, 1, 1)
verify_conv2d_NCHWc(1, 512, 5, 126, 3, 1, 1)
verify_conv2d_NCHWc(1, 256, 3, 126, 3, 1, 1)
# Asymmetric padding
verify_conv2d_NCHWc(1, 32, 17, 64, 7, 2, (0, 0, 1, 1))
verify_conv2d_NCHWc(1, 32, 35, 128, 3, 1, (3, 3, 2, 2))
verify_conv2d_NCHWc(1, 32, 35, 32, 1, 1, (1, 2, 2, 1))
verify_conv2d_NCHWc(1, 32, 17, 192, 1, 1, (1, 2))
verify_conv2d_NCHWc(1, 32, 8, 32, 3, 1, (3, 1))
verify_conv2d_NCHWc(1, 128, 8, 384, 3, 1, (0, 2))
verify_conv2d_NCHWc(1, 32, 8, 32, 1, 1, "VALID")
verify_conv2d_NCHWc(1, 388, 8, 32, 3, 1, "VALID")
verify_conv2d_NCHWc(1, 512, 19, 32, 1, 1, "SAME")
verify_conv2d_NCHWc(1, 32, 10, 32, 2, 1, "SAME")
verify_conv2d_NCHWc(1, 32, 8, 32, 3, 1, (1, 2, 2, 1), add_relu=True)
verify_conv2d_NCHWc(1, 32, 8, 32, 5, 2, (1, 3), add_bias=True)
verify_conv2d_NCHWc(1, 32, 8, 32, 3, 1, "VALID", add_bias=True, add_relu=True)
verify_conv2d_NCHWc(1, 32, 8, 32, 24, 1, "SAME", add_bias=True, add_relu=True)
if __name__ == "__main__":
test_conv2d_NCHWc()