blob: b87c0b0f00b2f09cd63b593e254b982bb1708d16 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
""" Tests on fx-quantized torch model conversion """
import torch
import torchvision
import pytest
import numpy as np
from torch.quantization import get_default_qconfig
from torch.quantization.quantize_fx import prepare_fx, convert_fx
from torchvision.models.efficientnet import efficientnet_b4
from torchvision.models.resnet import resnet50
from tvm import relay
import tvm.testing
def quantize(model, example_inputs):
qconfig = get_default_qconfig("fbgemm")
qconfig_dict = {"": qconfig}
return convert_fx(prepare_fx(model, qconfig_dict, example_inputs))
def quantize_and_build(model, in_size):
inp = torch.rand(1, 3, in_size, in_size)
input_name = "inp"
qmodel = quantize(model, inp)
with torch.no_grad():
script_module = torch.jit.trace(qmodel, inp)
with tvm.testing.disable_span_filling():
mod, _ = relay.frontend.from_pytorch(script_module, [(input_name, inp.shape)])
with tvm.testing.enable_span_filling():
mod_with_span, _ = relay.frontend.from_pytorch(script_module, [(input_name, inp.shape)])
assert tvm.ir.structural_equal(mod, mod_with_span, map_free_vars=True)
mod = relay.transform.InferType()(mod)
# Make sure that the model is quantized
assert "qnn.conv2d" in mod.astext(show_meta_data=False)
# Skip building since it is slow on CI
# relay.build(mod, params=params, target="llvm")
@pytest.mark.skip(reason="unsupported op aten::linalg_vector_norm")
def test_ssd_vgg():
class TraceWrapper(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, inp):
features = self.model.backbone(inp)
features = list(features.values())
out = self.model.head(features)
return out["bbox_regression"], out["cls_logits"]
model_func = torchvision.models.detection.ssd300_vgg16
model = TraceWrapper(model_func(num_classes=50, pretrained_backbone=True)).eval()
quantize_and_build(model, 300)
def test_deeplab_v3():
class TraceWrapper(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, inp):
out = self.model(inp)
return out["out"]
deeplabv3 = torchvision.models.segmentation.deeplabv3_mobilenet_v3_large(pretrained=True)
model = TraceWrapper(deeplabv3.eval()).eval()
quantize_and_build(model, 300)
def test_imagenet():
for model_func in [resnet50, efficientnet_b4]:
quantize_and_build(model_func(pretrained=True).eval(), 224)