| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| """ Tests on fx-quantized torch model conversion """ |
| import torch |
| import torchvision |
| import pytest |
| import numpy as np |
| from torch.quantization import get_default_qconfig |
| from torch.quantization.quantize_fx import prepare_fx, convert_fx |
| from torchvision.models.efficientnet import efficientnet_b4 |
| from torchvision.models.resnet import resnet50 |
| from tvm import relay |
| import tvm.testing |
| |
| |
| def quantize(model, example_inputs): |
| qconfig = get_default_qconfig("fbgemm") |
| qconfig_dict = {"": qconfig} |
| return convert_fx(prepare_fx(model, qconfig_dict, example_inputs)) |
| |
| |
| def quantize_and_build(model, in_size): |
| inp = torch.rand(1, 3, in_size, in_size) |
| input_name = "inp" |
| qmodel = quantize(model, inp) |
| |
| with torch.no_grad(): |
| script_module = torch.jit.trace(qmodel, inp) |
| with tvm.testing.disable_span_filling(): |
| mod, _ = relay.frontend.from_pytorch(script_module, [(input_name, inp.shape)]) |
| with tvm.testing.enable_span_filling(): |
| mod_with_span, _ = relay.frontend.from_pytorch(script_module, [(input_name, inp.shape)]) |
| assert tvm.ir.structural_equal(mod, mod_with_span, map_free_vars=True) |
| mod = relay.transform.InferType()(mod) |
| |
| # Make sure that the model is quantized |
| assert "qnn.conv2d" in mod.astext(show_meta_data=False) |
| |
| # Skip building since it is slow on CI |
| # relay.build(mod, params=params, target="llvm") |
| |
| |
| @pytest.mark.skip(reason="unsupported op aten::linalg_vector_norm") |
| def test_ssd_vgg(): |
| class TraceWrapper(torch.nn.Module): |
| def __init__(self, model): |
| super().__init__() |
| self.model = model |
| |
| def forward(self, inp): |
| features = self.model.backbone(inp) |
| features = list(features.values()) |
| out = self.model.head(features) |
| return out["bbox_regression"], out["cls_logits"] |
| |
| model_func = torchvision.models.detection.ssd300_vgg16 |
| model = TraceWrapper(model_func(num_classes=50, pretrained_backbone=True)).eval() |
| quantize_and_build(model, 300) |
| |
| |
| def test_deeplab_v3(): |
| class TraceWrapper(torch.nn.Module): |
| def __init__(self, model): |
| super().__init__() |
| self.model = model |
| |
| def forward(self, inp): |
| out = self.model(inp) |
| return out["out"] |
| |
| deeplabv3 = torchvision.models.segmentation.deeplabv3_mobilenet_v3_large(pretrained=True) |
| model = TraceWrapper(deeplabv3.eval()).eval() |
| quantize_and_build(model, 300) |
| |
| |
| def test_imagenet(): |
| for model_func in [resnet50, efficientnet_b4]: |
| quantize_and_build(model_func(pretrained=True).eval(), 224) |