blob: 11ababf1dffdff8bbb1c976764d8e732c91e786e [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file vta.cpp
* \brief VTA HLS design.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "vta.h"
template <typename DATA_T, int MAT_AXI_RATIO>
void reset_mem(
memop_sram_T &sram_idx,
memop_sram_T range,
DATA_T mem[][MAT_AXI_RATIO]) {
for (int i = 0; i < range; i ++) {
for (int j = 0; j < MAT_AXI_RATIO; j ++) {
#pragma HLS UNROLL
mem[sram_idx][j] = 0;
}
sram_idx ++;
}
}
template <typename DATA_T, int MAT_AXI_RATIO, int ELEM_BYTES>
void load_pad_2d(
volatile DATA_T *src,
DATA_T dst[][MAT_AXI_RATIO],
memop_sram_T sram_idx,
memop_dram_T dram_idx,
memop_size_T y_size,
memop_size_T x_size,
memop_stride_T x_stride,
memop_pad_T x_pad_0,
memop_pad_T x_pad_1,
memop_sram_T y_offset_0,
memop_sram_T y_offset_1) {
#pragma HLS INLINE
reset_mem<DATA_T, MAT_AXI_RATIO>(sram_idx, y_offset_0, dst);
for (int y = 0; y < y_size; y++) {
#pragma HLS PIPELINE
reset_mem<DATA_T, MAT_AXI_RATIO>(sram_idx, x_pad_0, dst);
memcpy(&dst[sram_idx][0],
(const DATA_T*) &src[dram_idx * MAT_AXI_RATIO],
x_size * ELEM_BYTES);
sram_idx += x_size;
dram_idx += x_stride;
reset_mem<DATA_T, MAT_AXI_RATIO>(sram_idx, x_pad_1, dst);
}
reset_mem<DATA_T, MAT_AXI_RATIO>(sram_idx, y_offset_1, dst);
}
template <typename DATA_T, int MAT_AXI_RATIO, int ELEM_BYTES>
void load_2d(
volatile DATA_T *src,
DATA_T dst[][MAT_AXI_RATIO],
memop_sram_T sram_idx,
memop_dram_T dram_idx,
memop_size_T y_size,
memop_size_T x_size,
memop_stride_T x_stride) {
#pragma HLS INLINE
for (int y = 0; y < y_size; y++) {
memcpy(&dst[sram_idx][0],
(const DATA_T*) &src[dram_idx * MAT_AXI_RATIO],
x_size * ELEM_BYTES);
#pragma HLS RESOURCE variable = sram_idx core = Mul_LUT
sram_idx += x_size;
dram_idx += x_stride;
}
}
template <typename WIDE_T, typename NARROW_T, typename IDX_T, int WIDE_W, int NARROW_W, int Y_DIM, int X_DIM>
void read_tensor(
IDX_T idx,
WIDE_T src[][NARROW_W * Y_DIM * X_DIM / WIDE_W],
NARROW_T dst[Y_DIM][X_DIM]) {
#pragma HLS INLINE
// Read in weight tensor
for (int p = 0; p < NARROW_W * Y_DIM * X_DIM / WIDE_W; p++) {
WIDE_T packet = src[idx][p];
for (int w = 0; w < (WIDE_W / NARROW_W); w++) {
int x = (p * (WIDE_W / NARROW_W) + w) / X_DIM;
int y = (p * (WIDE_W / NARROW_W) + w) % X_DIM;
dst[x][y] = (NARROW_T) packet.range((w + 1) * NARROW_W - 1, w * NARROW_W);
}
}
}
template <typename WIDE_T, typename NARROW_T, typename IDX_T, int WIDE_W, int NARROW_W, int Y_DIM, int X_DIM>
void write_tensor(
IDX_T idx,
NARROW_T src[Y_DIM][X_DIM],
WIDE_T dst[][NARROW_W * Y_DIM * X_DIM / WIDE_W]) {
#pragma HLS INLINE
for (int p = 0; p < NARROW_W * Y_DIM * X_DIM / WIDE_W; p++) {
WIDE_T packet = 0;
for (int w = 0; w < (WIDE_W / NARROW_W); w++) {
int x = (p * (WIDE_W / NARROW_W) + w) / X_DIM;
int y = (p * (WIDE_W / NARROW_W) + w) % X_DIM;
packet.range((w + 1) * NARROW_W - 1, w * NARROW_W) = src[x][y];
}
dst[idx][p] = packet;
}
}
void fetch(
uint32_t insn_count,
volatile insn_T *insns,
hls::stream<insn_T> &load_queue,
hls::stream<insn_T> &gemm_queue,
hls::stream<insn_T> &store_queue) {
PRAGMA_HLS(HLS INTERFACE s_axilite port = insn_count bundle = CONTROL_BUS offset = VTA_FETCH_INSN_COUNT_OFFSET)
#pragma HLS INTERFACE m_axi port = insns offset = slave bundle = ins_port
#pragma HLS INTERFACE axis port = load_queue
#pragma HLS INTERFACE axis port = gemm_queue
#pragma HLS INTERFACE axis port = store_queue
#pragma HLS INTERFACE s_axilite port = return bundle = CONTROL_BUS
INSN_DECODE: for (int pc = 0; pc < insn_count; pc++) {
#pragma HLS PIPELINE
// Read instruction fields
insn_T raw_insn = insns[pc];
VTAInsn insn;
insn.generic = *((VTAGenericInsn *) &raw_insn);
// Do some partial decoding
opcode_T opcode = insn.generic.opcode;
memop_id_T memory_type = insn.mem.memory_type;
// Push to appropriate instruction queue
if (opcode == VTA_OPCODE_STORE) {
store_queue.write(raw_insn);
} else if (opcode == VTA_OPCODE_LOAD) {
if (memory_type == VTA_MEM_ID_INP || memory_type == VTA_MEM_ID_WGT) {
load_queue.write(raw_insn);
} else {
gemm_queue.write(raw_insn);
}
} else {
gemm_queue.write(raw_insn);
}
}
}
void load(
volatile bus_T *inputs,
volatile bus_T *weights,
hls::stream<insn_T> &load_queue,
hls::stream<bool> &g2l_dep_queue,
hls::stream<bool> &l2g_dep_queue,
bus_T inp_mem[VTA_INP_BUFF_DEPTH][INP_MAT_AXI_RATIO],
bus_T wgt_mem[VTA_WGT_BUFF_DEPTH][WGT_MAT_AXI_RATIO]) {
#pragma HLS INTERFACE m_axi port = inputs offset = slave bundle = data_port
#pragma HLS INTERFACE m_axi port = weights offset = slave bundle = data_port
#pragma HLS INTERFACE axis port = load_queue
#pragma HLS INTERFACE axis port = g2l_dep_queue
#pragma HLS INTERFACE axis port = l2g_dep_queue
#pragma HLS INTERFACE bram port = wgt_mem
#pragma HLS INTERFACE bram port = inp_mem
#pragma HLS INTERFACE s_axilite port = return bundle = CONTROL_BUS
#pragma HLS RESOURCE variable = inp_mem core = RAM_1P
#pragma HLS RESOURCE variable = wgt_mem core = RAM_1P
// Pop load instruction
insn_T raw_insn = load_queue.read();
// Cast to MemInsn
insn_T raw_copy = raw_insn;
VTAMemInsn insn = *((VTAMemInsn *) &raw_copy);
// Pop dependence token if instructed
if (insn.pop_next_dep) {
g2l_dep_queue.read();
}
// Pre-processing
memop_sram_T x_width = (insn.x_pad_0 + insn.x_size + insn.x_pad_1);
memop_sram_T y_offset_0 = x_width * insn.y_pad_0;
#pragma HLS RESOURCE variable = y_offset_0 core = Mul_LUT latency = 4
memop_sram_T y_offset_1 = x_width * insn.y_pad_1;
#pragma HLS RESOURCE variable = y_offset_1 core = Mul_LUT latency = 4
if (insn.memory_type == VTA_MEM_ID_INP) {
load_pad_2d<bus_T, INP_MAT_AXI_RATIO, VTA_INP_ELEM_BYTES>(
inputs,
inp_mem,
insn.sram_base,
insn.dram_base,
insn.y_size,
insn.x_size,
insn.x_stride,
insn.x_pad_0,
insn.x_pad_1,
y_offset_0,
y_offset_1);
} else if (insn.memory_type == VTA_MEM_ID_WGT) {
load_2d<bus_T, WGT_MAT_AXI_RATIO, VTA_WGT_ELEM_BYTES>(
weights,
wgt_mem,
insn.sram_base,
insn.dram_base,
insn.y_size,
insn.x_size,
insn.x_stride);
}
// Push dependence token if instructed
if (insn.push_next_dep) {
l2g_dep_queue.write(1);
}
}
void gemm(
insn_T insn_raw,
uop_T uop_mem[VTA_UOP_BUFF_DEPTH],
bus_T acc_mem[VTA_ACC_BUFF_DEPTH][ACC_MAT_AXI_RATIO],
bus_T inp_mem[VTA_INP_BUFF_DEPTH][INP_MAT_AXI_RATIO],
bus_T wgt_mem[VTA_WGT_BUFF_DEPTH][WGT_MAT_AXI_RATIO],
bus_T out_mem[VTA_ACC_BUFF_DEPTH][OUT_MAT_AXI_RATIO]) {
#pragma HLS INLINE
VTAGemInsn insn = *((VTAGemInsn *) &insn_raw);
// Loop offset
acc_idx_T dst_offset_out = 0;
inp_idx_T src_offset_out = 0;
wgt_idx_T wgt_offset_out = 0;
// Outer Loop
EXE_OUT_LOOP: for (int it_out = 0; it_out < insn.iter_out; it_out++) {
acc_idx_T dst_offset_in = dst_offset_out;
inp_idx_T src_offset_in = src_offset_out;
wgt_idx_T wgt_offset_in = wgt_offset_out;
// Inner Loop
EXE_IN_LOOP: for (int it_in = 0; it_in < insn.iter_in; it_in++) {
// Iterate over micro op
READ_GEMM_UOP: for (int upc = insn.uop_bgn; upc < insn.uop_end; upc++) {
#pragma HLS PIPELINE II = 1
// Read micro-op fields
uop_T uop = uop_mem[upc];
// Decode indices
acc_idx_T dst_idx =
uop.range(VTA_UOP_GEM_0_1, VTA_UOP_GEM_0_0) + dst_offset_in;
inp_idx_T src_idx =
uop.range(VTA_UOP_GEM_1_1, VTA_UOP_GEM_1_0) + src_offset_in;
wgt_idx_T wgt_idx =
uop.range(VTA_UOP_GEM_2_1, VTA_UOP_GEM_2_0) + wgt_offset_in;
// Read in weight tensor
wgt_T w_tensor[VTA_BLOCK_OUT][VTA_BLOCK_IN];
read_tensor<bus_T, wgt_T, wgt_idx_T, VTA_BUS_WIDTH, VTA_WGT_WIDTH, VTA_BLOCK_OUT, VTA_BLOCK_IN>(wgt_idx, wgt_mem, w_tensor);
// Read in input tensor
inp_T i_tensor[VTA_BATCH][VTA_BLOCK_IN];
read_tensor<bus_T, inp_T, inp_idx_T, VTA_BUS_WIDTH, VTA_INP_WIDTH, VTA_BATCH, VTA_BLOCK_IN>(src_idx, inp_mem, i_tensor);
// Read in accum tensor
acc_T a_tensor[VTA_BATCH][VTA_BLOCK_OUT];
read_tensor<bus_T, acc_T, acc_idx_T, VTA_BUS_WIDTH, VTA_ACC_WIDTH, VTA_BATCH, VTA_BLOCK_OUT>(dst_idx, acc_mem, a_tensor);
// Output tensor
out_T o_tensor[VTA_BATCH][VTA_BLOCK_OUT];
// Inner GEMM loop
for (int b = 0; b < VTA_BATCH; b++) {
for (int oc = 0; oc < VTA_BLOCK_OUT; oc++) {
// Initialize the accumulator values
acc_T accum = a_tensor[b][oc];
// Dot product sum
sum_T tmp = 0;
// Inner matrix multiplication loop (input channel/feature)
for (int ic = 0; ic < VTA_BLOCK_IN; ic++) {
wgt_T w_elem = w_tensor[oc][ic];
inp_T i_elem = i_tensor[b][ic];
mul_T prod_dsp = i_elem * w_elem;
tmp += (sum_T) prod_dsp;
}
// Update summation
accum += (acc_T) tmp;
// Write back result acc_mem
a_tensor[b][oc] = insn.reset_reg ? (acc_T) 0 : accum;
// And output vector
o_tensor[b][oc] = (out_T) accum.range(VTA_OUT_WIDTH - 1, 0);
}
}
// Write the results back into accumulator
write_tensor<bus_T, acc_T, acc_idx_T, VTA_BUS_WIDTH, VTA_ACC_WIDTH, VTA_BATCH, VTA_BLOCK_OUT>(dst_idx, a_tensor, acc_mem);
// Write the results back in the output buffer
write_tensor<bus_T, out_T, acc_idx_T, VTA_BUS_WIDTH, VTA_OUT_WIDTH, VTA_BATCH, VTA_BLOCK_OUT>(dst_idx, o_tensor, out_mem);
}
// Update offsets
dst_offset_in += insn.dst_factor_in;
src_offset_in += insn.src_factor_in;
wgt_offset_in += insn.wgt_factor_in;
}
// Update offsets
dst_offset_out += insn.dst_factor_out;
src_offset_out += insn.src_factor_out;
wgt_offset_out += insn.wgt_factor_out;
}
}
void alu(
insn_T insn_raw,
uop_T uop_mem[VTA_UOP_BUFF_DEPTH],
bus_T acc_mem[VTA_ACC_BUFF_DEPTH][ACC_MAT_AXI_RATIO],
bus_T inp_mem[VTA_INP_BUFF_DEPTH][INP_MAT_AXI_RATIO],
bus_T wgt_mem[VTA_WGT_BUFF_DEPTH][WGT_MAT_AXI_RATIO],
bus_T out_mem[VTA_ACC_BUFF_DEPTH][OUT_MAT_AXI_RATIO]) {
#pragma HLS INLINE
VTAAluInsn insn = *((VTAAluInsn *) &insn_raw);
// Loop offset
acc_idx_T dst_offset_out = 0;
inp_idx_T src_offset_out = 0;
// Outer Loop
EXE_OUT_LOOP: for (int it_out = 0; it_out < insn.iter_out; it_out++) {
acc_idx_T dst_offset_in = dst_offset_out;
inp_idx_T src_offset_in = src_offset_out;
// Inner Loop
EXE_IN_LOOP: for (int it_in = 0; it_in < insn.iter_in; it_in++) {
// Iterate over micro op
READ_ALU_UOP: for (int upc = insn.uop_bgn; upc < insn.uop_end; upc++) {
#pragma HLS PIPELINE II = 2
// Read micro-op fields
uop_T uop = uop_mem[upc];
// Decode
acc_idx_T dst_idx =
uop.range(VTA_UOP_ALU_0_1, VTA_UOP_ALU_0_0) + dst_offset_in;
acc_idx_T src_idx =
uop.range(VTA_UOP_ALU_1_1, VTA_UOP_ALU_1_0) + src_offset_in;
// Read in src tensor
acc_T src_tensor[VTA_BATCH][VTA_BLOCK_OUT];
read_tensor<bus_T, acc_T, acc_idx_T, VTA_BUS_WIDTH, VTA_ACC_WIDTH, VTA_BATCH, VTA_BLOCK_OUT>(src_idx, acc_mem, src_tensor);
// Read in dst tensor
acc_T dst_tensor[VTA_BATCH][VTA_BLOCK_OUT];
read_tensor<bus_T, acc_T, acc_idx_T, VTA_BUS_WIDTH, VTA_ACC_WIDTH, VTA_BATCH, VTA_BLOCK_OUT>(dst_idx, acc_mem, dst_tensor);
// Output tensor
out_T o_tensor[VTA_BATCH][VTA_BLOCK_OUT];
// Perform ALU op over matrix elements
for (int i = 0; i < VTA_BATCH; i++) {
for (int b = 0; b < VTA_BLOCK_OUT; b++) {
// Read in operands
acc_T src_0 = dst_tensor[i][b];
acc_T src_1 = insn.use_imm ? (acc_T) insn.imm : src_tensor[i][b];
aluop_shr_arg_T shft_by = src_1.range(VTA_SHR_ARG_BIT_WIDTH - 1, 0);
aluop_mul_arg_T mul_by = src_1.range(VTA_MUL_ARG_BIT_WIDTH - 1, 0);
if (insn.alu_opcode == VTA_ALU_OPCODE_MIN || insn.alu_opcode == VTA_ALU_OPCODE_MAX) {
// Compute Min/Max
acc_T mix_val = src_0 < src_1 ?
(insn.alu_opcode == VTA_ALU_OPCODE_MIN ? src_0 : src_1) :
(insn.alu_opcode == VTA_ALU_OPCODE_MIN ? src_1 : src_0);
dst_tensor[i][b] = mix_val;
o_tensor[i][b] = (out_T) mix_val.range(VTA_OUT_WIDTH - 1, 0);
} else if (insn.alu_opcode == VTA_ALU_OPCODE_ADD) {
// Compute Sum
acc_T add_val =
src_0.range(VTA_ACC_WIDTH - 1, 0) + src_1.range(VTA_ACC_WIDTH - 1, 0);
dst_tensor[i][b] = add_val;
o_tensor[i][b] = (out_T) add_val.range(VTA_OUT_WIDTH - 1, 0);
} else if (insn.alu_opcode == VTA_ALU_OPCODE_SHR) {
// Compute Shift Right
acc_T shr_val = src_0 >> shft_by;
dst_tensor[i][b] = shr_val;
o_tensor[i][b] = (out_T) shr_val.range(VTA_OUT_WIDTH - 1, 0);
}
}
}
// Write the results back into accumulator
write_tensor<bus_T, acc_T, acc_idx_T, VTA_BUS_WIDTH, VTA_ACC_WIDTH, VTA_BATCH, VTA_BLOCK_OUT>(dst_idx, dst_tensor, acc_mem);
// Write the results back in the output buffer
write_tensor<bus_T, out_T, acc_idx_T, VTA_BUS_WIDTH, VTA_OUT_WIDTH, VTA_BATCH, VTA_BLOCK_OUT>(dst_idx, o_tensor, out_mem);
}
// Update offsets
dst_offset_in += insn.dst_factor_in;
src_offset_in += insn.src_factor_in;
}
// Update offsets
dst_offset_out += insn.dst_factor_out;
src_offset_out += insn.src_factor_out;
}
}
void compute(
volatile uint32_t &done,
volatile uop_T *uops,
volatile bus_T *biases,
hls::stream<insn_T> &gemm_queue,
hls::stream<bool> &l2g_dep_queue,
hls::stream<bool> &s2g_dep_queue,
hls::stream<bool> &g2l_dep_queue,
hls::stream<bool> &g2s_dep_queue,
bus_T inp_mem[VTA_INP_BUFF_DEPTH][INP_MAT_AXI_RATIO],
bus_T wgt_mem[VTA_WGT_BUFF_DEPTH][WGT_MAT_AXI_RATIO],
bus_T out_mem[VTA_ACC_BUFF_DEPTH][OUT_MAT_AXI_RATIO]) {
PRAGMA_HLS(HLS INTERFACE s_axilite port = done bundle = CONTROL_BUS offset = VTA_COMPUTE_DONE_WR_OFFSET)
#pragma HLS INTERFACE m_axi port = uops offset = slave bundle = uop_port
#pragma HLS INTERFACE m_axi port = biases offset = slave bundle = data_port
#pragma HLS INTERFACE axis port = gemm_queue
#pragma HLS INTERFACE axis port = l2g_dep_queue
#pragma HLS INTERFACE axis port = s2g_dep_queue
#pragma HLS INTERFACE axis port = g2l_dep_queue
#pragma HLS INTERFACE axis port = g2s_dep_queue
#pragma HLS INTERFACE bram port = inp_mem
#pragma HLS INTERFACE bram port = wgt_mem
#pragma HLS INTERFACE bram port = out_mem
#pragma HLS INTERFACE s_axilite port = return bundle = CONTROL_BUS
#pragma HLS RESOURCE variable = inp_mem core = RAM_1P
#pragma HLS RESOURCE variable = wgt_mem core = RAM_1P
#pragma HLS RESOURCE variable = out_mem core = RAM_1P
// Micro-op storage
static uop_T uop_mem[VTA_UOP_BUFF_DEPTH];
// Accumulator storage
static bus_T acc_mem[VTA_ACC_BUFF_DEPTH][ACC_MAT_AXI_RATIO];
#pragma HLS ARRAY_RESHAPE variable = acc_mem complete dim=2
// This is necessary to obtain II=1
#pragma HLS DEPENDENCE variable = acc_mem inter false
// Pop GEMM instruction
insn_T raw_insn = gemm_queue.read();
// Cast to GenericInsn
VTAInsn insn;
insn_T raw_copy = raw_insn;
insn.generic = *((VTAGenericInsn *) &raw_copy);
// Pop dependence token if instructed
if (insn.generic.pop_prev_dep) {
l2g_dep_queue.read();
}
if (insn.generic.pop_next_dep) {
s2g_dep_queue.read();
}
// Set done value
done = 0;
// Perform action based on opcode
if (insn.generic.opcode == VTA_OPCODE_FINISH) {
// Set done flag if we reach a FINISH instruction
done = 1;
} else if (insn.generic.opcode == VTA_OPCODE_LOAD) {
// Initialize indices
memop_sram_T sram_idx = insn.mem.sram_base;
memop_dram_T dram_idx = insn.mem.dram_base;
if (insn.mem.memory_type == VTA_MEM_ID_UOP) {
// Perform data transfer
memcpy(&uop_mem[sram_idx],
(const uop_T*) &uops[dram_idx],
insn.mem.x_size * sizeof(uop_T));
} else if (insn.mem.memory_type == VTA_MEM_ID_ACC) {
// Perform data transfer from DRAM
load_2d<bus_T, ACC_MAT_AXI_RATIO, VTA_ACC_ELEM_BYTES>(
biases,
acc_mem,
sram_idx,
dram_idx,
insn.mem.y_size,
insn.mem.x_size,
insn.mem.x_stride);
}
} else if (insn.generic.opcode == VTA_OPCODE_GEMM) {
gemm(raw_copy, uop_mem, acc_mem, inp_mem, wgt_mem, out_mem);
} else if (insn.generic.opcode == VTA_OPCODE_ALU) {
alu(raw_copy, uop_mem, acc_mem, inp_mem, wgt_mem, out_mem);
}
// Push dependence token if instructed
if (insn.generic.push_prev_dep) {
g2l_dep_queue.write(1);
}
if (insn.generic.push_next_dep) {
g2s_dep_queue.write(1);
}
}
void store(
volatile bus_T *outputs,
hls::stream<insn_T> &store_queue,
hls::stream<bool> &g2s_dep_queue,
hls::stream<bool> &s2g_dep_queue,
bus_T out_mem[VTA_ACC_BUFF_DEPTH][OUT_MAT_AXI_RATIO]) {
#pragma HLS INTERFACE m_axi port = outputs offset = slave bundle = data_port
#pragma HLS INTERFACE axis port = store_queue
#pragma HLS INTERFACE axis port = g2s_dep_queue
#pragma HLS INTERFACE axis port = s2g_dep_queue
#pragma HLS INTERFACE bram port = out_mem
#pragma HLS INTERFACE s_axilite port = return bundle = CONTROL_BUS
#pragma HLS RESOURCE variable = out_mem core = RAM_1P
// Pop store instruction
insn_T raw_insn = store_queue.read();
// Cast to MemInsn
insn_T raw_copy = raw_insn;
VTAMemInsn insn = *((VTAMemInsn *) &raw_copy);
// Pop dependence token if instructed
if (insn.pop_prev_dep) {
g2s_dep_queue.read();
}
// Initialize indices
memop_sram_T sram_idx = insn.sram_base;
memop_dram_T dram_idx = insn.dram_base;
// Copy along y dimension
for (int y = 0; y < insn.y_size; y++) {
#pragma HLS PIPELINE
// Perform data transfer
memcpy(
const_cast<bus_T*>(&outputs[dram_idx * OUT_MAT_AXI_RATIO]),
(const bus_T*) &out_mem[sram_idx][0],
insn.x_size * VTA_OUT_ELEM_BYTES);
#pragma HLS RESOURCE variable = sram_idx core = Mul_LUT
sram_idx += insn.x_size;
dram_idx += insn.x_stride;
}
// Push dependence token if instructed
if (insn.push_prev_dep) {
s2g_dep_queue.write(1);
}
}
void vta(
uint32_t insn_count,
volatile insn_T *insns,
volatile uop_T *uops,
volatile bus_T *inputs,
volatile bus_T *weights,
volatile bus_T *biases,
volatile bus_T *outputs) {
#pragma HLS INTERFACE s_axilite port = insn_count bundle = CONTROL_BUS
#pragma HLS INTERFACE m_axi port = insns offset = slave bundle = ins_port
#pragma HLS INTERFACE m_axi port = uops offset = slave bundle = uop_port
#pragma HLS INTERFACE m_axi port = inputs offset = slave bundle = data_port
#pragma HLS INTERFACE m_axi port = weights offset = slave bundle = data_port
#pragma HLS INTERFACE m_axi port = biases offset = slave bundle = data_port
#pragma HLS INTERFACE m_axi port = outputs offset = slave bundle = data_port
#pragma HLS INTERFACE s_axilite port = return bundle = CONTROL_BUS
// Instantiate temporary instruction queues (used for peeking)
hls::stream<insn_T> tmp_load_queue;
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=tmp_load_queue)
hls::stream<insn_T> tmp_gemm_queue;
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=tmp_gemm_queue)
hls::stream<insn_T> tmp_store_queue;
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=tmp_store_queue)
// Instatiate physical instruction queues
hls::stream<insn_T> load_queue;
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=load_queue)
hls::stream<insn_T> gemm_queue;
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=gemm_queue)
hls::stream<insn_T> store_queue;
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=store_queue)
// Dependence queues
hls::stream<bool> l2g_dep_queue;
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=l2g_dep_queue)
hls::stream<bool> s2g_dep_queue;
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=s2g_dep_queue)
hls::stream<bool> g2l_dep_queue;
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=g2l_dep_queue)
hls::stream<bool> g2s_dep_queue;
PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=g2s_dep_queue)
// Instantiate memories
bus_T inp_mem[VTA_INP_BUFF_DEPTH][INP_MAT_AXI_RATIO];
bus_T wgt_mem[VTA_WGT_BUFF_DEPTH][WGT_MAT_AXI_RATIO];
bus_T out_mem[VTA_ACC_BUFF_DEPTH][OUT_MAT_AXI_RATIO];
// Push all instructions into the queues
fetch(insn_count, insns, tmp_load_queue, tmp_gemm_queue, tmp_store_queue);
// Global done indicator
uint32_t done = 0;
// Temporary instructions
insn_T tmp_load;
insn_T tmp_gemv;
insn_T tmp_store;
// Peeking status
bool tmp_load_popped = false;
bool tmp_gemm_popped = false;
bool tmp_store_popped = false;
int exit_counter = 0;
// Main control loop
while (true) {
// First execute as many load instructions as possible
while (!tmp_load_queue.empty() || tmp_load_popped == true) {
// Pop the load instruction
if (!tmp_load_popped) {
tmp_load_queue.read(tmp_load);
tmp_load_popped = true;
}
// Check dependences and invoke the load stage
VTAGenericInsn insn = *((VTAGenericInsn *) &tmp_load);
if ((insn.pop_next_dep && !g2l_dep_queue.empty()) ||
!insn.pop_next_dep) {
// Push the instruction in the load queue
load_queue.write(tmp_load);
tmp_load_popped = false;
load(inputs, weights, load_queue, g2l_dep_queue, l2g_dep_queue, inp_mem, wgt_mem);
} else {
// Execution of load stage pending on completion of other stages, so break here...
break;
}
}
// Next execute as many gemm instructions as possible
while (!tmp_gemm_queue.empty() || tmp_gemm_popped == true) {
// Pop the gemm instruction
if (!tmp_gemm_popped) {
tmp_gemm_queue.read(tmp_gemv);
tmp_gemm_popped = true;
}
// Check dependences and invoke the load stage
VTAGenericInsn insn = *((VTAGenericInsn *) &tmp_gemv);
if (
(insn.pop_prev_dep && !l2g_dep_queue.empty() &&
insn.pop_next_dep && !s2g_dep_queue.empty()) ||
(!insn.pop_prev_dep && insn.pop_next_dep &&
!s2g_dep_queue.empty()) ||
(insn.pop_prev_dep && !l2g_dep_queue.empty() &&
!insn.pop_next_dep) ||
(!insn.pop_prev_dep && !insn.pop_next_dep)
) {
// Push the instruction in the load queue
gemm_queue.write(tmp_gemv);
tmp_gemm_popped = false;
compute(done, uops, biases, gemm_queue, l2g_dep_queue, s2g_dep_queue,
g2l_dep_queue, g2s_dep_queue, inp_mem, wgt_mem, out_mem);
} else {
// Execution of load stage pending on completion of other stages,
// so break here...
break;
}
}
// Finally execute as many store instructions as possible
while (!tmp_store_queue.empty() || tmp_store_popped == true) {
// Pop the load instruction
if (!tmp_store_popped) {
tmp_store_queue.read(tmp_store);
tmp_store_popped = true;
}
// Check dependences and invoke the load stage
VTAGenericInsn insn = *((VTAGenericInsn *) &tmp_store);
if ((insn.pop_prev_dep && !g2s_dep_queue.empty()) ||
!insn.pop_prev_dep) {
// Push the instruction in the load queue
store_queue.write(tmp_store);
tmp_store_popped = false;
store(outputs, store_queue, g2s_dep_queue, s2g_dep_queue, out_mem);
} else {
// Execution of load stage pending on completion of other stages, so break here...
break;
}
}
// Check if we get a signal that we are done
if (done) {
break;
}
exit_counter++;
if (exit_counter > 1000) {
if (tmp_load_popped) {
if (g2l_dep_queue.empty()) {
printf("waiting on g2l\n");
}
}
if (tmp_gemm_popped) {
VTAGenericInsn insn = *((VTAGenericInsn *) &tmp_gemv);
if (l2g_dep_queue.empty() && insn.pop_prev_dep) {
printf("waiting on l2g\n");
}
if (s2g_dep_queue.empty() && insn.pop_next_dep) {
printf("waiting on s2g\n");
}
}
if (tmp_store_popped) {
if (g2s_dep_queue.empty()) {
printf("waiting on g2s\n");
}
}
break;
}
}
// Ensure that the tokens are empty
bool tmp_tok;
int l2g_count = 0;
int s2g_count = 0;
int g2l_count = 0;
int g2s_count = 0;
while (l2g_dep_queue.read_nb(tmp_tok)) {
l2g_count++;
}
while (s2g_dep_queue.read_nb(tmp_tok)) {
s2g_count++;
}
while (g2l_dep_queue.read_nb(tmp_tok)) {
g2l_count++;
}
while (g2s_dep_queue.read_nb(tmp_tok)) {
g2s_count++;
}
assert(l2g_count == 0 && s2g_count == 0 && g2l_count == 0 && g2s_count == 0);
}