| /* |
| ** Snapshot handling. |
| ** Copyright (C) 2005-2015 Mike Pall. See Copyright Notice in luajit.h |
| */ |
| |
| #define lj_snap_c |
| #define LUA_CORE |
| |
| #include "lj_obj.h" |
| |
| #if LJ_HASJIT |
| |
| #include "lj_gc.h" |
| #include "lj_tab.h" |
| #include "lj_state.h" |
| #include "lj_frame.h" |
| #include "lj_bc.h" |
| #include "lj_ir.h" |
| #include "lj_jit.h" |
| #include "lj_iropt.h" |
| #include "lj_trace.h" |
| #include "lj_snap.h" |
| #include "lj_target.h" |
| #if LJ_HASFFI |
| #include "lj_ctype.h" |
| #include "lj_cdata.h" |
| #endif |
| |
| /* Some local macros to save typing. Undef'd at the end. */ |
| #define IR(ref) (&J->cur.ir[(ref)]) |
| |
| /* Pass IR on to next optimization in chain (FOLD). */ |
| #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) |
| |
| /* Emit raw IR without passing through optimizations. */ |
| #define emitir_raw(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_ir_emit(J)) |
| |
| /* -- Snapshot buffer allocation ------------------------------------------ */ |
| |
| /* Grow snapshot buffer. */ |
| void lj_snap_grow_buf_(jit_State *J, MSize need) |
| { |
| MSize maxsnap = (MSize)J->param[JIT_P_maxsnap]; |
| if (need > maxsnap) |
| lj_trace_err(J, LJ_TRERR_SNAPOV); |
| lj_mem_growvec(J->L, J->snapbuf, J->sizesnap, maxsnap, SnapShot); |
| J->cur.snap = J->snapbuf; |
| } |
| |
| /* Grow snapshot map buffer. */ |
| void lj_snap_grow_map_(jit_State *J, MSize need) |
| { |
| if (need < 2*J->sizesnapmap) |
| need = 2*J->sizesnapmap; |
| else if (need < 64) |
| need = 64; |
| J->snapmapbuf = (SnapEntry *)lj_mem_realloc(J->L, J->snapmapbuf, |
| J->sizesnapmap*sizeof(SnapEntry), need*sizeof(SnapEntry)); |
| J->cur.snapmap = J->snapmapbuf; |
| J->sizesnapmap = need; |
| } |
| |
| /* -- Snapshot generation ------------------------------------------------- */ |
| |
| /* Add all modified slots to the snapshot. */ |
| static MSize snapshot_slots(jit_State *J, SnapEntry *map, BCReg nslots) |
| { |
| IRRef retf = J->chain[IR_RETF]; /* Limits SLOAD restore elimination. */ |
| BCReg s; |
| MSize n = 0; |
| for (s = 0; s < nslots; s++) { |
| TRef tr = J->slot[s]; |
| IRRef ref = tref_ref(tr); |
| if (ref) { |
| SnapEntry sn = SNAP_TR(s, tr); |
| IRIns *ir = IR(ref); |
| if (!(sn & (SNAP_CONT|SNAP_FRAME)) && |
| ir->o == IR_SLOAD && ir->op1 == s && ref > retf) { |
| /* No need to snapshot unmodified non-inherited slots. */ |
| if (!(ir->op2 & IRSLOAD_INHERIT)) |
| continue; |
| /* No need to restore readonly slots and unmodified non-parent slots. */ |
| if (!(LJ_DUALNUM && (ir->op2 & IRSLOAD_CONVERT)) && |
| (ir->op2 & (IRSLOAD_READONLY|IRSLOAD_PARENT)) != IRSLOAD_PARENT) |
| sn |= SNAP_NORESTORE; |
| } |
| if (LJ_SOFTFP && irt_isnum(ir->t)) |
| sn |= SNAP_SOFTFPNUM; |
| map[n++] = sn; |
| } |
| } |
| return n; |
| } |
| |
| /* Add frame links at the end of the snapshot. */ |
| static BCReg snapshot_framelinks(jit_State *J, SnapEntry *map) |
| { |
| cTValue *frame = J->L->base - 1; |
| cTValue *lim = J->L->base - J->baseslot; |
| cTValue *ftop = frame + funcproto(frame_func(frame))->framesize; |
| MSize f = 0; |
| map[f++] = SNAP_MKPC(J->pc); /* The current PC is always the first entry. */ |
| while (frame > lim) { /* Backwards traversal of all frames above base. */ |
| if (frame_islua(frame)) { |
| map[f++] = SNAP_MKPC(frame_pc(frame)); |
| frame = frame_prevl(frame); |
| } else if (frame_iscont(frame)) { |
| map[f++] = SNAP_MKFTSZ(frame_ftsz(frame)); |
| map[f++] = SNAP_MKPC(frame_contpc(frame)); |
| frame = frame_prevd(frame); |
| } else { |
| lua_assert(!frame_isc(frame)); |
| map[f++] = SNAP_MKFTSZ(frame_ftsz(frame)); |
| frame = frame_prevd(frame); |
| continue; |
| } |
| if (frame + funcproto(frame_func(frame))->framesize > ftop) |
| ftop = frame + funcproto(frame_func(frame))->framesize; |
| } |
| lua_assert(f == (MSize)(1 + J->framedepth)); |
| return (BCReg)(ftop - lim); |
| } |
| |
| /* Take a snapshot of the current stack. */ |
| static void snapshot_stack(jit_State *J, SnapShot *snap, MSize nsnapmap) |
| { |
| BCReg nslots = J->baseslot + J->maxslot; |
| MSize nent; |
| SnapEntry *p; |
| /* Conservative estimate. */ |
| lj_snap_grow_map(J, nsnapmap + nslots + (MSize)J->framedepth+1); |
| p = &J->cur.snapmap[nsnapmap]; |
| nent = snapshot_slots(J, p, nslots); |
| snap->topslot = (uint8_t)snapshot_framelinks(J, p + nent); |
| snap->mapofs = (uint16_t)nsnapmap; |
| snap->ref = (IRRef1)J->cur.nins; |
| snap->nent = (uint8_t)nent; |
| snap->nslots = (uint8_t)nslots; |
| snap->count = 0; |
| J->cur.nsnapmap = (uint16_t)(nsnapmap + nent + 1 + J->framedepth); |
| } |
| |
| /* Add or merge a snapshot. */ |
| void lj_snap_add(jit_State *J) |
| { |
| MSize nsnap = J->cur.nsnap; |
| MSize nsnapmap = J->cur.nsnapmap; |
| /* Merge if no ins. inbetween or if requested and no guard inbetween. */ |
| if (J->mergesnap ? !irt_isguard(J->guardemit) : |
| (nsnap > 0 && J->cur.snap[nsnap-1].ref == J->cur.nins)) { |
| if (nsnap == 1) { /* But preserve snap #0 PC. */ |
| emitir_raw(IRT(IR_NOP, IRT_NIL), 0, 0); |
| goto nomerge; |
| } |
| nsnapmap = J->cur.snap[--nsnap].mapofs; |
| } else { |
| nomerge: |
| lj_snap_grow_buf(J, nsnap+1); |
| J->cur.nsnap = (uint16_t)(nsnap+1); |
| } |
| J->mergesnap = 0; |
| J->guardemit.irt = 0; |
| snapshot_stack(J, &J->cur.snap[nsnap], nsnapmap); |
| } |
| |
| /* -- Snapshot modification ----------------------------------------------- */ |
| |
| #define SNAP_USEDEF_SLOTS (LJ_MAX_JSLOTS+LJ_STACK_EXTRA) |
| |
| /* Find unused slots with reaching-definitions bytecode data-flow analysis. */ |
| static BCReg snap_usedef(jit_State *J, uint8_t *udf, |
| const BCIns *pc, BCReg maxslot) |
| { |
| BCReg s; |
| GCobj *o; |
| |
| if (maxslot == 0) return 0; |
| #ifdef LUAJIT_USE_VALGRIND |
| /* Avoid errors for harmless reads beyond maxslot. */ |
| memset(udf, 1, SNAP_USEDEF_SLOTS); |
| #else |
| memset(udf, 1, maxslot); |
| #endif |
| |
| /* Treat open upvalues as used. */ |
| o = gcref(J->L->openupval); |
| while (o) { |
| if (uvval(gco2uv(o)) < J->L->base) break; |
| udf[uvval(gco2uv(o)) - J->L->base] = 0; |
| o = gcref(o->gch.nextgc); |
| } |
| |
| #define USE_SLOT(s) udf[(s)] &= ~1 |
| #define DEF_SLOT(s) udf[(s)] *= 3 |
| |
| /* Scan through following bytecode and check for uses/defs. */ |
| lua_assert(pc >= proto_bc(J->pt) && pc < proto_bc(J->pt) + J->pt->sizebc); |
| for (;;) { |
| BCIns ins = *pc++; |
| BCOp op = bc_op(ins); |
| switch (bcmode_b(op)) { |
| case BCMvar: USE_SLOT(bc_b(ins)); break; |
| default: break; |
| } |
| switch (bcmode_c(op)) { |
| case BCMvar: USE_SLOT(bc_c(ins)); break; |
| case BCMrbase: |
| lua_assert(op == BC_CAT); |
| for (s = bc_b(ins); s <= bc_c(ins); s++) USE_SLOT(s); |
| for (; s < maxslot; s++) DEF_SLOT(s); |
| break; |
| case BCMjump: |
| handle_jump: { |
| BCReg minslot = bc_a(ins); |
| if (op >= BC_FORI && op <= BC_JFORL) minslot += FORL_EXT; |
| else if (op >= BC_ITERL && op <= BC_JITERL) minslot += bc_b(pc[-2])-1; |
| else if (op == BC_UCLO) { pc += bc_j(ins); break; } |
| for (s = minslot; s < maxslot; s++) DEF_SLOT(s); |
| return minslot < maxslot ? minslot : maxslot; |
| } |
| case BCMlit: |
| if (op == BC_JFORL || op == BC_JITERL || op == BC_JLOOP) { |
| goto handle_jump; |
| } else if (bc_isret(op)) { |
| BCReg top = op == BC_RETM ? maxslot : (bc_a(ins) + bc_d(ins)-1); |
| for (s = 0; s < bc_a(ins); s++) DEF_SLOT(s); |
| for (; s < top; s++) USE_SLOT(s); |
| for (; s < maxslot; s++) DEF_SLOT(s); |
| return 0; |
| } |
| break; |
| case BCMfunc: return maxslot; /* NYI: will abort, anyway. */ |
| default: break; |
| } |
| switch (bcmode_a(op)) { |
| case BCMvar: USE_SLOT(bc_a(ins)); break; |
| case BCMdst: |
| if (!(op == BC_ISTC || op == BC_ISFC)) DEF_SLOT(bc_a(ins)); |
| break; |
| case BCMbase: |
| if (op >= BC_CALLM && op <= BC_VARG) { |
| BCReg top = (op == BC_CALLM || op == BC_CALLMT || bc_c(ins) == 0) ? |
| maxslot : (bc_a(ins) + bc_c(ins)); |
| s = bc_a(ins) - ((op == BC_ITERC || op == BC_ITERN) ? 3 : 0); |
| for (; s < top; s++) USE_SLOT(s); |
| for (; s < maxslot; s++) DEF_SLOT(s); |
| if (op == BC_CALLT || op == BC_CALLMT) { |
| for (s = 0; s < bc_a(ins); s++) DEF_SLOT(s); |
| return 0; |
| } |
| } else if (op == BC_KNIL) { |
| for (s = bc_a(ins); s <= bc_d(ins); s++) DEF_SLOT(s); |
| } else if (op == BC_TSETM) { |
| for (s = bc_a(ins)-1; s < maxslot; s++) USE_SLOT(s); |
| } |
| break; |
| default: break; |
| } |
| lua_assert(pc >= proto_bc(J->pt) && pc < proto_bc(J->pt) + J->pt->sizebc); |
| } |
| |
| #undef USE_SLOT |
| #undef DEF_SLOT |
| |
| return 0; /* unreachable */ |
| } |
| |
| /* Purge dead slots before the next snapshot. */ |
| void lj_snap_purge(jit_State *J) |
| { |
| uint8_t udf[SNAP_USEDEF_SLOTS]; |
| BCReg maxslot = J->maxslot; |
| BCReg s = snap_usedef(J, udf, J->pc, maxslot); |
| for (; s < maxslot; s++) |
| if (udf[s] != 0) |
| J->base[s] = 0; /* Purge dead slots. */ |
| } |
| |
| /* Shrink last snapshot. */ |
| void lj_snap_shrink(jit_State *J) |
| { |
| SnapShot *snap = &J->cur.snap[J->cur.nsnap-1]; |
| SnapEntry *map = &J->cur.snapmap[snap->mapofs]; |
| MSize n, m, nlim, nent = snap->nent; |
| uint8_t udf[SNAP_USEDEF_SLOTS]; |
| BCReg maxslot = J->maxslot; |
| BCReg minslot = snap_usedef(J, udf, snap_pc(map[nent]), maxslot); |
| BCReg baseslot = J->baseslot; |
| maxslot += baseslot; |
| minslot += baseslot; |
| snap->nslots = (uint8_t)maxslot; |
| for (n = m = 0; n < nent; n++) { /* Remove unused slots from snapshot. */ |
| BCReg s = snap_slot(map[n]); |
| if (s < minslot || (s < maxslot && udf[s-baseslot] == 0)) |
| map[m++] = map[n]; /* Only copy used slots. */ |
| } |
| snap->nent = (uint8_t)m; |
| nlim = J->cur.nsnapmap - snap->mapofs - 1; |
| while (n <= nlim) map[m++] = map[n++]; /* Move PC + frame links down. */ |
| J->cur.nsnapmap = (uint16_t)(snap->mapofs + m); /* Free up space in map. */ |
| } |
| |
| /* -- Snapshot access ----------------------------------------------------- */ |
| |
| /* Initialize a Bloom Filter with all renamed refs. |
| ** There are very few renames (often none), so the filter has |
| ** very few bits set. This makes it suitable for negative filtering. |
| */ |
| static BloomFilter snap_renamefilter(GCtrace *T, SnapNo lim) |
| { |
| BloomFilter rfilt = 0; |
| IRIns *ir; |
| for (ir = &T->ir[T->nins-1]; ir->o == IR_RENAME; ir--) |
| if (ir->op2 <= lim) |
| bloomset(rfilt, ir->op1); |
| return rfilt; |
| } |
| |
| /* Process matching renames to find the original RegSP. */ |
| static RegSP snap_renameref(GCtrace *T, SnapNo lim, IRRef ref, RegSP rs) |
| { |
| IRIns *ir; |
| for (ir = &T->ir[T->nins-1]; ir->o == IR_RENAME; ir--) |
| if (ir->op1 == ref && ir->op2 <= lim) |
| rs = ir->prev; |
| return rs; |
| } |
| |
| /* Copy RegSP from parent snapshot to the parent links of the IR. */ |
| IRIns *lj_snap_regspmap(GCtrace *T, SnapNo snapno, IRIns *ir) |
| { |
| SnapShot *snap = &T->snap[snapno]; |
| SnapEntry *map = &T->snapmap[snap->mapofs]; |
| BloomFilter rfilt = snap_renamefilter(T, snapno); |
| MSize n = 0; |
| IRRef ref = 0; |
| for ( ; ; ir++) { |
| uint32_t rs; |
| if (ir->o == IR_SLOAD) { |
| if (!(ir->op2 & IRSLOAD_PARENT)) break; |
| for ( ; ; n++) { |
| lua_assert(n < snap->nent); |
| if (snap_slot(map[n]) == ir->op1) { |
| ref = snap_ref(map[n++]); |
| break; |
| } |
| } |
| } else if (LJ_SOFTFP && ir->o == IR_HIOP) { |
| ref++; |
| } else if (ir->o == IR_PVAL) { |
| ref = ir->op1 + REF_BIAS; |
| } else { |
| break; |
| } |
| rs = T->ir[ref].prev; |
| if (bloomtest(rfilt, ref)) |
| rs = snap_renameref(T, snapno, ref, rs); |
| ir->prev = (uint16_t)rs; |
| lua_assert(regsp_used(rs)); |
| } |
| return ir; |
| } |
| |
| /* -- Snapshot replay ----------------------------------------------------- */ |
| |
| /* Replay constant from parent trace. */ |
| static TRef snap_replay_const(jit_State *J, IRIns *ir) |
| { |
| /* Only have to deal with constants that can occur in stack slots. */ |
| switch ((IROp)ir->o) { |
| case IR_KPRI: return TREF_PRI(irt_type(ir->t)); |
| case IR_KINT: return lj_ir_kint(J, ir->i); |
| case IR_KGC: return lj_ir_kgc(J, ir_kgc(ir), irt_t(ir->t)); |
| case IR_KNUM: return lj_ir_k64(J, IR_KNUM, ir_knum(ir)); |
| case IR_KINT64: return lj_ir_k64(J, IR_KINT64, ir_kint64(ir)); |
| case IR_KPTR: return lj_ir_kptr(J, ir_kptr(ir)); /* Continuation. */ |
| default: lua_assert(0); return TREF_NIL; break; |
| } |
| } |
| |
| /* De-duplicate parent reference. */ |
| static TRef snap_dedup(jit_State *J, SnapEntry *map, MSize nmax, IRRef ref) |
| { |
| MSize j; |
| for (j = 0; j < nmax; j++) |
| if (snap_ref(map[j]) == ref) |
| return J->slot[snap_slot(map[j])] & ~(SNAP_CONT|SNAP_FRAME); |
| return 0; |
| } |
| |
| /* Emit parent reference with de-duplication. */ |
| static TRef snap_pref(jit_State *J, GCtrace *T, SnapEntry *map, MSize nmax, |
| BloomFilter seen, IRRef ref) |
| { |
| IRIns *ir = &T->ir[ref]; |
| TRef tr; |
| if (irref_isk(ref)) |
| tr = snap_replay_const(J, ir); |
| else if (!regsp_used(ir->prev)) |
| tr = 0; |
| else if (!bloomtest(seen, ref) || (tr = snap_dedup(J, map, nmax, ref)) == 0) |
| tr = emitir(IRT(IR_PVAL, irt_type(ir->t)), ref - REF_BIAS, 0); |
| return tr; |
| } |
| |
| /* Check whether a sunk store corresponds to an allocation. Slow path. */ |
| static int snap_sunk_store2(jit_State *J, IRIns *ira, IRIns *irs) |
| { |
| if (irs->o == IR_ASTORE || irs->o == IR_HSTORE || |
| irs->o == IR_FSTORE || irs->o == IR_XSTORE) { |
| IRIns *irk = IR(irs->op1); |
| if (irk->o == IR_AREF || irk->o == IR_HREFK) |
| irk = IR(irk->op1); |
| return (IR(irk->op1) == ira); |
| } |
| return 0; |
| } |
| |
| /* Check whether a sunk store corresponds to an allocation. Fast path. */ |
| static LJ_AINLINE int snap_sunk_store(jit_State *J, IRIns *ira, IRIns *irs) |
| { |
| if (irs->s != 255) |
| return (ira + irs->s == irs); /* Fast check. */ |
| return snap_sunk_store2(J, ira, irs); |
| } |
| |
| /* Replay snapshot state to setup side trace. */ |
| void lj_snap_replay(jit_State *J, GCtrace *T) |
| { |
| SnapShot *snap = &T->snap[J->exitno]; |
| SnapEntry *map = &T->snapmap[snap->mapofs]; |
| MSize n, nent = snap->nent; |
| BloomFilter seen = 0; |
| int pass23 = 0; |
| J->framedepth = 0; |
| /* Emit IR for slots inherited from parent snapshot. */ |
| for (n = 0; n < nent; n++) { |
| SnapEntry sn = map[n]; |
| BCReg s = snap_slot(sn); |
| IRRef ref = snap_ref(sn); |
| IRIns *ir = &T->ir[ref]; |
| TRef tr; |
| /* The bloom filter avoids O(nent^2) overhead for de-duping slots. */ |
| if (bloomtest(seen, ref) && (tr = snap_dedup(J, map, n, ref)) != 0) |
| goto setslot; |
| bloomset(seen, ref); |
| if (irref_isk(ref)) { |
| tr = snap_replay_const(J, ir); |
| } else if (!regsp_used(ir->prev)) { |
| pass23 = 1; |
| lua_assert(s != 0); |
| tr = s; |
| } else { |
| IRType t = irt_type(ir->t); |
| uint32_t mode = IRSLOAD_INHERIT|IRSLOAD_PARENT; |
| if (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM)) t = IRT_NUM; |
| if (ir->o == IR_SLOAD) mode |= (ir->op2 & IRSLOAD_READONLY); |
| tr = emitir_raw(IRT(IR_SLOAD, t), s, mode); |
| } |
| setslot: |
| J->slot[s] = tr | (sn&(SNAP_CONT|SNAP_FRAME)); /* Same as TREF_* flags. */ |
| J->framedepth += ((sn & (SNAP_CONT|SNAP_FRAME)) && s); |
| if ((sn & SNAP_FRAME)) |
| J->baseslot = s+1; |
| } |
| if (pass23) { |
| IRIns *irlast = &T->ir[snap->ref]; |
| pass23 = 0; |
| /* Emit dependent PVALs. */ |
| for (n = 0; n < nent; n++) { |
| SnapEntry sn = map[n]; |
| IRRef refp = snap_ref(sn); |
| IRIns *ir = &T->ir[refp]; |
| if (regsp_reg(ir->r) == RID_SUNK) { |
| if (J->slot[snap_slot(sn)] != snap_slot(sn)) continue; |
| pass23 = 1; |
| lua_assert(ir->o == IR_TNEW || ir->o == IR_TDUP || |
| ir->o == IR_CNEW || ir->o == IR_CNEWI); |
| if (ir->op1 >= T->nk) snap_pref(J, T, map, nent, seen, ir->op1); |
| if (ir->op2 >= T->nk) snap_pref(J, T, map, nent, seen, ir->op2); |
| if (LJ_HASFFI && ir->o == IR_CNEWI) { |
| if (LJ_32 && refp+1 < T->nins && (ir+1)->o == IR_HIOP) |
| snap_pref(J, T, map, nent, seen, (ir+1)->op2); |
| } else { |
| IRIns *irs; |
| for (irs = ir+1; irs < irlast; irs++) |
| if (irs->r == RID_SINK && snap_sunk_store(J, ir, irs)) { |
| if (snap_pref(J, T, map, nent, seen, irs->op2) == 0) |
| snap_pref(J, T, map, nent, seen, T->ir[irs->op2].op1); |
| else if ((LJ_SOFTFP || (LJ_32 && LJ_HASFFI)) && |
| irs+1 < irlast && (irs+1)->o == IR_HIOP) |
| snap_pref(J, T, map, nent, seen, (irs+1)->op2); |
| } |
| } |
| } else if (!irref_isk(refp) && !regsp_used(ir->prev)) { |
| lua_assert(ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT); |
| J->slot[snap_slot(sn)] = snap_pref(J, T, map, nent, seen, ir->op1); |
| } |
| } |
| /* Replay sunk instructions. */ |
| for (n = 0; pass23 && n < nent; n++) { |
| SnapEntry sn = map[n]; |
| IRRef refp = snap_ref(sn); |
| IRIns *ir = &T->ir[refp]; |
| if (regsp_reg(ir->r) == RID_SUNK) { |
| TRef op1, op2; |
| if (J->slot[snap_slot(sn)] != snap_slot(sn)) { /* De-dup allocs. */ |
| J->slot[snap_slot(sn)] = J->slot[J->slot[snap_slot(sn)]]; |
| continue; |
| } |
| op1 = ir->op1; |
| if (op1 >= T->nk) op1 = snap_pref(J, T, map, nent, seen, op1); |
| op2 = ir->op2; |
| if (op2 >= T->nk) op2 = snap_pref(J, T, map, nent, seen, op2); |
| if (LJ_HASFFI && ir->o == IR_CNEWI) { |
| if (LJ_32 && refp+1 < T->nins && (ir+1)->o == IR_HIOP) { |
| lj_needsplit(J); /* Emit joining HIOP. */ |
| op2 = emitir_raw(IRT(IR_HIOP, IRT_I64), op2, |
| snap_pref(J, T, map, nent, seen, (ir+1)->op2)); |
| } |
| J->slot[snap_slot(sn)] = emitir(ir->ot, op1, op2); |
| } else { |
| IRIns *irs; |
| TRef tr = emitir(ir->ot, op1, op2); |
| J->slot[snap_slot(sn)] = tr; |
| for (irs = ir+1; irs < irlast; irs++) |
| if (irs->r == RID_SINK && snap_sunk_store(J, ir, irs)) { |
| IRIns *irr = &T->ir[irs->op1]; |
| TRef val, key = irr->op2, tmp = tr; |
| if (irr->o != IR_FREF) { |
| IRIns *irk = &T->ir[key]; |
| if (irr->o == IR_HREFK) |
| key = lj_ir_kslot(J, snap_replay_const(J, &T->ir[irk->op1]), |
| irk->op2); |
| else |
| key = snap_replay_const(J, irk); |
| if (irr->o == IR_HREFK || irr->o == IR_AREF) { |
| IRIns *irf = &T->ir[irr->op1]; |
| tmp = emitir(irf->ot, tmp, irf->op2); |
| } |
| } |
| tmp = emitir(irr->ot, tmp, key); |
| val = snap_pref(J, T, map, nent, seen, irs->op2); |
| if (val == 0) { |
| IRIns *irc = &T->ir[irs->op2]; |
| lua_assert(irc->o == IR_CONV && irc->op2 == IRCONV_NUM_INT); |
| val = snap_pref(J, T, map, nent, seen, irc->op1); |
| val = emitir(IRTN(IR_CONV), val, IRCONV_NUM_INT); |
| } else if ((LJ_SOFTFP || (LJ_32 && LJ_HASFFI)) && |
| irs+1 < irlast && (irs+1)->o == IR_HIOP) { |
| IRType t = IRT_I64; |
| if (LJ_SOFTFP && irt_type((irs+1)->t) == IRT_SOFTFP) |
| t = IRT_NUM; |
| lj_needsplit(J); |
| if (irref_isk(irs->op2) && irref_isk((irs+1)->op2)) { |
| uint64_t k = (uint32_t)T->ir[irs->op2].i + |
| ((uint64_t)T->ir[(irs+1)->op2].i << 32); |
| val = lj_ir_k64(J, t == IRT_I64 ? IR_KINT64 : IR_KNUM, |
| lj_ir_k64_find(J, k)); |
| } else { |
| val = emitir_raw(IRT(IR_HIOP, t), val, |
| snap_pref(J, T, map, nent, seen, (irs+1)->op2)); |
| } |
| tmp = emitir(IRT(irs->o, t), tmp, val); |
| continue; |
| } |
| tmp = emitir(irs->ot, tmp, val); |
| } else if (LJ_HASFFI && irs->o == IR_XBAR && ir->o == IR_CNEW) { |
| emitir(IRT(IR_XBAR, IRT_NIL), 0, 0); |
| } |
| } |
| } |
| } |
| } |
| J->base = J->slot + J->baseslot; |
| J->maxslot = snap->nslots - J->baseslot; |
| lj_snap_add(J); |
| if (pass23) /* Need explicit GC step _after_ initial snapshot. */ |
| emitir_raw(IRTG(IR_GCSTEP, IRT_NIL), 0, 0); |
| } |
| |
| /* -- Snapshot restore ---------------------------------------------------- */ |
| |
| static void snap_unsink(jit_State *J, GCtrace *T, ExitState *ex, |
| SnapNo snapno, BloomFilter rfilt, |
| IRIns *ir, TValue *o); |
| |
| /* Restore a value from the trace exit state. */ |
| static void snap_restoreval(jit_State *J, GCtrace *T, ExitState *ex, |
| SnapNo snapno, BloomFilter rfilt, |
| IRRef ref, TValue *o) |
| { |
| IRIns *ir = &T->ir[ref]; |
| IRType1 t = ir->t; |
| RegSP rs = ir->prev; |
| if (irref_isk(ref)) { /* Restore constant slot. */ |
| lj_ir_kvalue(J->L, o, ir); |
| return; |
| } |
| if (LJ_UNLIKELY(bloomtest(rfilt, ref))) |
| rs = snap_renameref(T, snapno, ref, rs); |
| if (ra_hasspill(regsp_spill(rs))) { /* Restore from spill slot. */ |
| int32_t *sps = &ex->spill[regsp_spill(rs)]; |
| if (irt_isinteger(t)) { |
| setintV(o, *sps); |
| #if !LJ_SOFTFP |
| } else if (irt_isnum(t)) { |
| o->u64 = *(uint64_t *)sps; |
| #endif |
| } else if (LJ_64 && irt_islightud(t)) { |
| /* 64 bit lightuserdata which may escape already has the tag bits. */ |
| o->u64 = *(uint64_t *)sps; |
| } else { |
| lua_assert(!irt_ispri(t)); /* PRI refs never have a spill slot. */ |
| setgcrefi(o->gcr, *sps); |
| setitype(o, irt_toitype(t)); |
| } |
| } else { /* Restore from register. */ |
| Reg r = regsp_reg(rs); |
| if (ra_noreg(r)) { |
| lua_assert(ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT); |
| snap_restoreval(J, T, ex, snapno, rfilt, ir->op1, o); |
| if (LJ_DUALNUM) setnumV(o, (lua_Number)intV(o)); |
| return; |
| } else if (irt_isinteger(t)) { |
| setintV(o, (int32_t)ex->gpr[r-RID_MIN_GPR]); |
| #if !LJ_SOFTFP |
| } else if (irt_isnum(t)) { |
| setnumV(o, ex->fpr[r-RID_MIN_FPR]); |
| #endif |
| } else if (LJ_64 && irt_islightud(t)) { |
| /* 64 bit lightuserdata which may escape already has the tag bits. */ |
| o->u64 = ex->gpr[r-RID_MIN_GPR]; |
| } else { |
| if (!irt_ispri(t)) |
| setgcrefi(o->gcr, ex->gpr[r-RID_MIN_GPR]); |
| setitype(o, irt_toitype(t)); |
| } |
| } |
| } |
| |
| #if LJ_HASFFI |
| /* Restore raw data from the trace exit state. */ |
| static void snap_restoredata(GCtrace *T, ExitState *ex, |
| SnapNo snapno, BloomFilter rfilt, |
| IRRef ref, void *dst, CTSize sz) |
| { |
| IRIns *ir = &T->ir[ref]; |
| RegSP rs = ir->prev; |
| int32_t *src; |
| uint64_t tmp; |
| if (irref_isk(ref)) { |
| if (ir->o == IR_KNUM || ir->o == IR_KINT64) { |
| src = mref(ir->ptr, int32_t); |
| } else if (sz == 8) { |
| tmp = (uint64_t)(uint32_t)ir->i; |
| src = (int32_t *)&tmp; |
| } else { |
| src = &ir->i; |
| } |
| } else { |
| if (LJ_UNLIKELY(bloomtest(rfilt, ref))) |
| rs = snap_renameref(T, snapno, ref, rs); |
| if (ra_hasspill(regsp_spill(rs))) { |
| src = &ex->spill[regsp_spill(rs)]; |
| if (sz == 8 && !irt_is64(ir->t)) { |
| tmp = (uint64_t)(uint32_t)*src; |
| src = (int32_t *)&tmp; |
| } |
| } else { |
| Reg r = regsp_reg(rs); |
| if (ra_noreg(r)) { |
| /* Note: this assumes CNEWI is never used for SOFTFP split numbers. */ |
| lua_assert(sz == 8 && ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT); |
| snap_restoredata(T, ex, snapno, rfilt, ir->op1, dst, 4); |
| *(lua_Number *)dst = (lua_Number)*(int32_t *)dst; |
| return; |
| } |
| src = (int32_t *)&ex->gpr[r-RID_MIN_GPR]; |
| #if !LJ_SOFTFP |
| if (r >= RID_MAX_GPR) { |
| src = (int32_t *)&ex->fpr[r-RID_MIN_FPR]; |
| #if LJ_TARGET_PPC |
| if (sz == 4) { /* PPC FPRs are always doubles. */ |
| *(float *)dst = (float)*(double *)src; |
| return; |
| } |
| #else |
| if (LJ_BE && sz == 4) src++; |
| #endif |
| } |
| #endif |
| } |
| } |
| lua_assert(sz == 1 || sz == 2 || sz == 4 || sz == 8); |
| if (sz == 4) *(int32_t *)dst = *src; |
| else if (sz == 8) *(int64_t *)dst = *(int64_t *)src; |
| else if (sz == 1) *(int8_t *)dst = (int8_t)*src; |
| else *(int16_t *)dst = (int16_t)*src; |
| } |
| #endif |
| |
| /* Unsink allocation from the trace exit state. Unsink sunk stores. */ |
| static void snap_unsink(jit_State *J, GCtrace *T, ExitState *ex, |
| SnapNo snapno, BloomFilter rfilt, |
| IRIns *ir, TValue *o) |
| { |
| lua_assert(ir->o == IR_TNEW || ir->o == IR_TDUP || |
| ir->o == IR_CNEW || ir->o == IR_CNEWI); |
| #if LJ_HASFFI |
| if (ir->o == IR_CNEW || ir->o == IR_CNEWI) { |
| CTState *cts = ctype_cts(J->L); |
| CTypeID id = (CTypeID)T->ir[ir->op1].i; |
| CTSize sz = lj_ctype_size(cts, id); |
| GCcdata *cd = lj_cdata_new(cts, id, sz); |
| setcdataV(J->L, o, cd); |
| if (ir->o == IR_CNEWI) { |
| uint8_t *p = (uint8_t *)cdataptr(cd); |
| lua_assert(sz == 4 || sz == 8); |
| if (LJ_32 && sz == 8 && ir+1 < T->ir + T->nins && (ir+1)->o == IR_HIOP) { |
| snap_restoredata(T, ex, snapno, rfilt, (ir+1)->op2, LJ_LE?p+4:p, 4); |
| if (LJ_BE) p += 4; |
| sz = 4; |
| } |
| snap_restoredata(T, ex, snapno, rfilt, ir->op2, p, sz); |
| } else { |
| IRIns *irs, *irlast = &T->ir[T->snap[snapno].ref]; |
| for (irs = ir+1; irs < irlast; irs++) |
| if (irs->r == RID_SINK && snap_sunk_store(J, ir, irs)) { |
| IRIns *iro = &T->ir[T->ir[irs->op1].op2]; |
| uint8_t *p = (uint8_t *)cd; |
| CTSize szs; |
| lua_assert(irs->o == IR_XSTORE && T->ir[irs->op1].o == IR_ADD); |
| lua_assert(iro->o == IR_KINT || iro->o == IR_KINT64); |
| if (irt_is64(irs->t)) szs = 8; |
| else if (irt_isi8(irs->t) || irt_isu8(irs->t)) szs = 1; |
| else if (irt_isi16(irs->t) || irt_isu16(irs->t)) szs = 2; |
| else szs = 4; |
| if (LJ_64 && iro->o == IR_KINT64) |
| p += (int64_t)ir_k64(iro)->u64; |
| else |
| p += iro->i; |
| lua_assert(p >= (uint8_t *)cdataptr(cd) && |
| p + szs <= (uint8_t *)cdataptr(cd) + sz); |
| if (LJ_32 && irs+1 < T->ir + T->nins && (irs+1)->o == IR_HIOP) { |
| lua_assert(szs == 4); |
| snap_restoredata(T, ex, snapno, rfilt, (irs+1)->op2, LJ_LE?p+4:p,4); |
| if (LJ_BE) p += 4; |
| } |
| snap_restoredata(T, ex, snapno, rfilt, irs->op2, p, szs); |
| } |
| } |
| } else |
| #endif |
| { |
| IRIns *irs, *irlast; |
| GCtab *t = ir->o == IR_TNEW ? lj_tab_new(J->L, ir->op1, ir->op2) : |
| lj_tab_dup(J->L, ir_ktab(&T->ir[ir->op1])); |
| settabV(J->L, o, t); |
| irlast = &T->ir[T->snap[snapno].ref]; |
| for (irs = ir+1; irs < irlast; irs++) |
| if (irs->r == RID_SINK && snap_sunk_store(J, ir, irs)) { |
| IRIns *irk = &T->ir[irs->op1]; |
| TValue tmp, *val; |
| lua_assert(irs->o == IR_ASTORE || irs->o == IR_HSTORE || |
| irs->o == IR_FSTORE); |
| if (irk->o == IR_FREF) { |
| lua_assert(irk->op2 == IRFL_TAB_META); |
| snap_restoreval(J, T, ex, snapno, rfilt, irs->op2, &tmp); |
| /* NOBARRIER: The table is new (marked white). */ |
| setgcref(t->metatable, obj2gco(tabV(&tmp))); |
| } else { |
| irk = &T->ir[irk->op2]; |
| if (irk->o == IR_KSLOT) irk = &T->ir[irk->op1]; |
| lj_ir_kvalue(J->L, &tmp, irk); |
| val = lj_tab_set(J->L, t, &tmp); |
| /* NOBARRIER: The table is new (marked white). */ |
| snap_restoreval(J, T, ex, snapno, rfilt, irs->op2, val); |
| if (LJ_SOFTFP && irs+1 < T->ir + T->nins && (irs+1)->o == IR_HIOP) { |
| snap_restoreval(J, T, ex, snapno, rfilt, (irs+1)->op2, &tmp); |
| val->u32.hi = tmp.u32.lo; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Restore interpreter state from exit state with the help of a snapshot. */ |
| const BCIns *lj_snap_restore(jit_State *J, void *exptr) |
| { |
| ExitState *ex = (ExitState *)exptr; |
| SnapNo snapno = J->exitno; /* For now, snapno == exitno. */ |
| GCtrace *T = traceref(J, J->parent); |
| SnapShot *snap = &T->snap[snapno]; |
| MSize n, nent = snap->nent; |
| SnapEntry *map = &T->snapmap[snap->mapofs]; |
| SnapEntry *flinks = &T->snapmap[snap_nextofs(T, snap)-1]; |
| int32_t ftsz0; |
| TValue *frame; |
| BloomFilter rfilt = snap_renamefilter(T, snapno); |
| const BCIns *pc = snap_pc(map[nent]); |
| lua_State *L = J->L; |
| |
| /* Set interpreter PC to the next PC to get correct error messages. */ |
| setcframe_pc(cframe_raw(L->cframe), pc+1); |
| |
| /* Make sure the stack is big enough for the slots from the snapshot. */ |
| if (LJ_UNLIKELY(L->base + snap->topslot >= tvref(L->maxstack))) { |
| L->top = curr_topL(L); |
| lj_state_growstack(L, snap->topslot - curr_proto(L)->framesize); |
| } |
| |
| /* Fill stack slots with data from the registers and spill slots. */ |
| frame = L->base-1; |
| ftsz0 = frame_ftsz(frame); /* Preserve link to previous frame in slot #0. */ |
| for (n = 0; n < nent; n++) { |
| SnapEntry sn = map[n]; |
| if (!(sn & SNAP_NORESTORE)) { |
| TValue *o = &frame[snap_slot(sn)]; |
| IRRef ref = snap_ref(sn); |
| IRIns *ir = &T->ir[ref]; |
| if (ir->r == RID_SUNK) { |
| MSize j; |
| for (j = 0; j < n; j++) |
| if (snap_ref(map[j]) == ref) { /* De-duplicate sunk allocations. */ |
| copyTV(L, o, &frame[snap_slot(map[j])]); |
| goto dupslot; |
| } |
| snap_unsink(J, T, ex, snapno, rfilt, ir, o); |
| dupslot: |
| continue; |
| } |
| snap_restoreval(J, T, ex, snapno, rfilt, ref, o); |
| if (LJ_SOFTFP && (sn & SNAP_SOFTFPNUM) && tvisint(o)) { |
| TValue tmp; |
| snap_restoreval(J, T, ex, snapno, rfilt, ref+1, &tmp); |
| o->u32.hi = tmp.u32.lo; |
| } else if ((sn & (SNAP_CONT|SNAP_FRAME))) { |
| /* Overwrite tag with frame link. */ |
| o->fr.tp.ftsz = snap_slot(sn) != 0 ? (int32_t)*flinks-- : ftsz0; |
| L->base = o+1; |
| } |
| } |
| } |
| lua_assert(map + nent == flinks); |
| |
| /* Compute current stack top. */ |
| switch (bc_op(*pc)) { |
| default: |
| if (bc_op(*pc) < BC_FUNCF) { |
| L->top = curr_topL(L); |
| break; |
| } |
| /* fallthrough */ |
| case BC_CALLM: case BC_CALLMT: case BC_RETM: case BC_TSETM: |
| L->top = frame + snap->nslots; |
| break; |
| } |
| return pc; |
| } |
| |
| #undef IR |
| #undef emitir_raw |
| #undef emitir |
| |
| #endif |