blob: 4b8291c8a39d949bca6e8ef024ac91826c73f8bb [file] [log] [blame]
/** @file
*
* QUIC Packet Header Protector
*
* @section license License
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "QUICPacketProtectionKeyInfo.h"
#include "QUICPacketPayloadProtector.h"
#include "QUICDebugNames.h"
static constexpr char tag[] = "quic_ppp";
Ptr<IOBufferBlock>
QUICPacketPayloadProtector::protect(const Ptr<IOBufferBlock> unprotected_header, const Ptr<IOBufferBlock> unprotected_payload,
uint64_t pkt_num, QUICKeyPhase phase) const
{
Ptr<IOBufferBlock> protected_payload;
protected_payload = nullptr;
if (!this->_pp_key_info.is_encryption_key_available(phase)) {
Debug(tag, "Failed to encrypt a packet: keys for %s is not ready", QUICDebugNames::key_phase(phase));
return protected_payload;
}
size_t tag_len = this->_pp_key_info.get_tag_len(phase);
const uint8_t *key = this->_pp_key_info.encryption_key(phase);
const uint8_t *iv = this->_pp_key_info.encryption_iv(phase);
size_t iv_len = *this->_pp_key_info.encryption_iv_len(phase);
const EVP_CIPHER *cipher = this->_pp_key_info.get_cipher(phase);
protected_payload = make_ptr<IOBufferBlock>(new_IOBufferBlock());
size_t unprotected_payload_len = 0;
for (Ptr<IOBufferBlock> tmp = unprotected_payload; tmp; tmp = tmp->next) {
unprotected_payload_len += tmp->size();
}
protected_payload->alloc(iobuffer_size_to_index(unprotected_payload_len + tag_len, BUFFER_SIZE_INDEX_32K));
size_t written_len = 0;
if (!this->_protect(reinterpret_cast<uint8_t *>(protected_payload->start()), written_len, protected_payload->write_avail(),
unprotected_payload, pkt_num, reinterpret_cast<uint8_t *>(unprotected_header->start()),
unprotected_header->size(), key, iv, iv_len, cipher, tag_len)) {
Debug(tag, "Failed to encrypt a packet #%" PRIu64 " with keys for %s", pkt_num, QUICDebugNames::key_phase(phase));
protected_payload = nullptr;
} else {
protected_payload->fill(written_len);
}
return protected_payload;
}
Ptr<IOBufferBlock>
QUICPacketPayloadProtector::unprotect(const Ptr<IOBufferBlock> unprotected_header, const Ptr<IOBufferBlock> protected_payload,
uint64_t pkt_num, QUICKeyPhase phase) const
{
Ptr<IOBufferBlock> unprotected_payload;
unprotected_payload = nullptr;
size_t tag_len = this->_pp_key_info.get_tag_len(phase);
const uint8_t *key = this->_pp_key_info.decryption_key(phase);
const uint8_t *iv = this->_pp_key_info.decryption_iv(phase);
size_t iv_len = *this->_pp_key_info.decryption_iv_len(phase);
if (!key) {
Debug(tag, "Failed to decrypt a packet: keys for %s is not ready", QUICDebugNames::key_phase(phase));
return unprotected_payload;
}
const EVP_CIPHER *cipher = this->_pp_key_info.get_cipher(phase);
unprotected_payload = make_ptr<IOBufferBlock>(new_IOBufferBlock());
unprotected_payload->alloc(iobuffer_size_to_index(protected_payload->size(), BUFFER_SIZE_INDEX_32K));
size_t written_len = 0;
if (!this->_unprotect(reinterpret_cast<uint8_t *>(unprotected_payload->start()), written_len, unprotected_payload->write_avail(),
reinterpret_cast<uint8_t *>(protected_payload->start()), protected_payload->size(), pkt_num,
reinterpret_cast<uint8_t *>(unprotected_header->start()), unprotected_header->size(), key, iv, iv_len,
cipher, tag_len)) {
Debug(tag, "Failed to decrypt a packet #%" PRIu64, pkt_num);
unprotected_payload = nullptr;
} else {
unprotected_payload->fill(written_len);
}
return unprotected_payload;
}
/**
* Example iv_len = 12
*
* 0 1
* 0 1 2 3 4 5 6 7 8 9 0 1 2 (byte)
* +-+-+-+-+-+-+-+-+-+-+-+-+-+
* | iv | // IV
* +-+-+-+-+-+-+-+-+-+-+-+-+-+
* |0|0|0|0| pkt num | // network byte order & left-padded with zeros
* +-+-+-+-+-+-+-+-+-+-+-+-+-+
* | nonce | // nonce = iv xor pkt_num
* +-+-+-+-+-+-+-+-+-+-+-+-+-+
*
*/
void
QUICPacketPayloadProtector::_gen_nonce(uint8_t *nonce, size_t &nonce_len, uint64_t pkt_num, const uint8_t *iv, size_t iv_len) const
{
nonce_len = iv_len;
memcpy(nonce, iv, iv_len);
pkt_num = htobe64(pkt_num);
uint8_t *p = reinterpret_cast<uint8_t *>(&pkt_num);
for (size_t i = 0; i < 8; ++i) {
nonce[iv_len - 8 + i] ^= p[i];
}
}
bool
QUICPacketPayloadProtector::_protect(uint8_t *cipher, size_t &cipher_len, size_t max_cipher_len, const Ptr<IOBufferBlock> plain,
uint64_t pkt_num, const uint8_t *ad, size_t ad_len, const uint8_t *key, const uint8_t *iv,
size_t iv_len, const EVP_CIPHER *aead, size_t tag_len) const
{
EVP_CIPHER_CTX *aead_ctx;
int len;
uint8_t nonce[EVP_MAX_IV_LENGTH] = {0};
size_t nonce_len = 0;
this->_gen_nonce(nonce, nonce_len, pkt_num, iv, iv_len);
if (!(aead_ctx = EVP_CIPHER_CTX_new())) {
return false;
}
if (!EVP_EncryptInit_ex(aead_ctx, aead, nullptr, nullptr, nullptr)) {
return false;
}
if (!EVP_CIPHER_CTX_ctrl(aead_ctx, EVP_CTRL_AEAD_SET_IVLEN, nonce_len, nullptr)) {
return false;
}
if (!EVP_EncryptInit_ex(aead_ctx, nullptr, nullptr, key, nonce)) {
return false;
}
if (!EVP_EncryptUpdate(aead_ctx, nullptr, &len, ad, ad_len)) {
return false;
}
cipher_len = 0;
for (Ptr<IOBufferBlock> b = plain; b; b = b->next) {
if (!EVP_EncryptUpdate(aead_ctx, cipher + cipher_len, &len, reinterpret_cast<unsigned char *>(b->start()), b->size())) {
return false;
}
cipher_len += len;
}
if (!EVP_EncryptFinal_ex(aead_ctx, cipher + cipher_len, &len)) {
return false;
}
cipher_len += len;
if (max_cipher_len < cipher_len + tag_len) {
return false;
}
if (!EVP_CIPHER_CTX_ctrl(aead_ctx, EVP_CTRL_AEAD_GET_TAG, tag_len, cipher + cipher_len)) {
return false;
}
cipher_len += tag_len;
EVP_CIPHER_CTX_free(aead_ctx);
return true;
}
bool
QUICPacketPayloadProtector::_unprotect(uint8_t *plain, size_t &plain_len, size_t max_plain_len, const uint8_t *cipher,
size_t cipher_len, uint64_t pkt_num, const uint8_t *ad, size_t ad_len, const uint8_t *key,
const uint8_t *iv, size_t iv_len, const EVP_CIPHER *aead, size_t tag_len) const
{
EVP_CIPHER_CTX *aead_ctx;
int len;
uint8_t nonce[EVP_MAX_IV_LENGTH] = {0};
size_t nonce_len = 0;
this->_gen_nonce(nonce, nonce_len, pkt_num, iv, iv_len);
if (!(aead_ctx = EVP_CIPHER_CTX_new())) {
return false;
}
if (!EVP_DecryptInit_ex(aead_ctx, aead, nullptr, nullptr, nullptr)) {
return false;
}
if (!EVP_CIPHER_CTX_ctrl(aead_ctx, EVP_CTRL_AEAD_SET_IVLEN, nonce_len, nullptr)) {
return false;
}
if (!EVP_DecryptInit_ex(aead_ctx, nullptr, nullptr, key, nonce)) {
return false;
}
if (!EVP_DecryptUpdate(aead_ctx, nullptr, &len, ad, ad_len)) {
return false;
}
if (cipher_len < tag_len) {
return false;
}
cipher_len -= tag_len;
if (!EVP_DecryptUpdate(aead_ctx, plain, &len, cipher, cipher_len)) {
return false;
}
plain_len = len;
if (!EVP_CIPHER_CTX_ctrl(aead_ctx, EVP_CTRL_AEAD_SET_TAG, tag_len, const_cast<uint8_t *>(cipher + cipher_len))) {
return false;
}
int ret = EVP_DecryptFinal_ex(aead_ctx, plain + len, &len);
EVP_CIPHER_CTX_free(aead_ctx);
if (ret > 0) {
plain_len += len;
return true;
} else {
Debug(tag, "Failed to decrypt -- the first 4 bytes decrypted are %0x %0x %0x %0x", plain[0], plain[1], plain[2], plain[3]);
return false;
}
}