blob: e6da38bba3bbbcb67712084cd8130fae4ef38ead [file] [log] [blame]
# include "IpMap.h"
/** @file
IP address map support.
Provide the ability to create a range based mapping for the IP
address space. Addresses can be added and removed and each address
is associated with arbitrary client data.
@internal Don't bother to look at this code if you don't know how
a red/black tree works. There are so many good references on the
subject it's a waste to have some inferior version here. The
methods on @c Node follow the standard implementation except for
being parameterized by direction (so that, for instance, right
rotate and left rotate are both done by the @c rotate method with
a direction argument).
@section license License
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
// Validation / printing disabled until I figure out how to generalize so
// as to not tie reporting into a particular project environment.
namespace ts { namespace detail {
// Helper functions
inline int cmp(sockaddr_in6 const& lhs, sockaddr_in6 const& rhs) {
return memcmp(lhs.sin6_addr.s6_addr, rhs.sin6_addr.s6_addr, TS_IP6_SIZE);
}
/// Less than.
inline bool operator<(sockaddr_in6 const& lhs, sockaddr_in6 const& rhs) {
return ts::detail::cmp(lhs, rhs) < 0;
}
inline bool operator<(sockaddr_in6 const* lhs, sockaddr_in6 const& rhs) {
return ts::detail::cmp(*lhs, rhs) < 0;
}
/// Less than.
inline bool operator<(sockaddr_in6 const& lhs, sockaddr_in6 const* rhs) {
return ts::detail::cmp(lhs, *rhs) < 0;
}
/// Equality.
inline bool operator==(sockaddr_in6 const& lhs, sockaddr_in6 const* rhs) {
return ts::detail::cmp(lhs, *rhs) == 0;
}
/// Equality.
inline bool operator==(sockaddr_in6 const* lhs, sockaddr_in6 const& rhs) {
return ts::detail::cmp(*lhs, rhs) == 0;
}
/// Equality.
inline bool operator==(sockaddr_in6 const& lhs, sockaddr_in6 const& rhs) {
return ts::detail::cmp(lhs, rhs) == 0;
}
/// Less than or equal.
inline bool operator<=(sockaddr_in6 const& lhs, sockaddr_in6 const* rhs) {
return ts::detail::cmp(lhs, *rhs) <= 0;
}
/// Less than or equal.
inline bool operator<=(sockaddr_in6 const& lhs, sockaddr_in6 const& rhs) {
return ts::detail::cmp(lhs, rhs) <= 0;
}
/// Greater than or equal.
inline bool operator>=(sockaddr_in6 const& lhs, sockaddr_in6 const& rhs) {
return ts::detail::cmp(lhs, rhs) >= 0;
}
/// Greater than or equal.
inline bool operator>=(sockaddr_in6 const& lhs, sockaddr_in6 const* rhs) {
return ts::detail::cmp(lhs, *rhs) >= 0;
}
/// Greater than.
inline bool operator>(sockaddr_in6 const& lhs, sockaddr_in6 const* rhs) {
return ts::detail::cmp(lhs, *rhs) > 0;
}
/// Equality.
/// @note If @a n is @c NULL it is treated as having the color @c BLACK.
/// @return @c true if @a c and the color of @a n are the same.
inline bool operator == ( RBNode* n, RBNode::Color c ) {
return c == ( n ? n->getColor() : RBNode::BLACK);
}
/// Equality.
/// @note If @a n is @c NULL it is treated as having the color @c BLACK.
/// @return @c true if @a c and the color of @a n are the same.
inline bool operator == ( RBNode::Color c, RBNode* n ) {
return n == c;
}
inline RBNode*
RBNode::getChild(Direction d) const {
return d == RIGHT ? _right
: d == LEFT ? _left
: 0
;
}
RBNode*
RBNode::rotate(Direction d) {
self* parent = _parent; // Cache because it can change before we use it.
Direction child_dir = _parent ? _parent->getChildDirection(this) : NONE;
Direction other_dir = this->flip(d);
self* child = this;
if (d != NONE && this->getChild(other_dir)) {
child = this->getChild(other_dir);
this->clearChild(other_dir);
this->setChild(child->getChild(d), other_dir);
child->clearChild(d);
child->setChild(this, d);
child->structureFixup();
this->structureFixup();
if (parent) {
parent->clearChild(child_dir);
parent->setChild(child, child_dir);
} else {
child->_parent = 0;
}
}
return child;
}
RBNode*
RBNode::setChild(self* n, Direction d) {
if (n) n->_parent = this;
if (d == RIGHT) _right = n;
else if (d == LEFT) _left = n;
return n;
}
// Returns the root node
RBNode*
RBNode::rippleStructureFixup() {
self* root = this; // last node seen, root node at the end
self* p = this;
while (p) {
p->structureFixup();
root = p;
p = root->_parent;
}
return root;
}
void
RBNode::replaceWith(self* n) {
n->_color = _color;
if (_parent) {
Direction d = _parent->getChildDirection(this);
_parent->setChild(0, d);
if (_parent != n) _parent->setChild(n, d);
} else {
n->_parent = 0;
}
n->_left = n->_right = 0;
if (_left && _left != n) n->setChild(_left, LEFT);
if (_right && _right != n) n->setChild(_right, RIGHT);
_left = _right = 0;
}
/* Rebalance the tree. This node is the unbalanced node. */
RBNode*
RBNode::rebalanceAfterInsert() {
self* x(this); // the node with the imbalance
while (x && x->_parent == RED) {
Direction child_dir = NONE;
if (x->_parent->_parent)
child_dir = x->_parent->_parent->getChildDirection(x->_parent);
else
break;
Direction other_dir(flip(child_dir));
self* y = x->_parent->_parent->getChild(other_dir);
if (y == RED) {
x->_parent->_color = BLACK;
y->_color = BLACK;
x = x->_parent->_parent;
x->_color = RED;
} else {
if (x->_parent->getChild(other_dir) == x) {
x = x->_parent;
x->rotate(child_dir);
}
// Note setting the parent color to BLACK causes the loop to exit.
x->_parent->_color = BLACK;
x->_parent->_parent->_color = RED;
x->_parent->_parent->rotate(other_dir);
}
}
// every node above this one has a subtree structure change,
// so notify it. serendipitously, this makes it easy to return
// the new root node.
self* root = this->rippleStructureFixup();
root->_color = BLACK;
return root;
}
// Returns new root node
RBNode*
RBNode::remove() {
self* root = 0; // new root node, returned to caller
/* Handle two special cases first.
- This is the only node in the tree, return a new root of NIL
- This is the root node with only one child, return that child as new root
*/
if (!_parent && !(_left && _right)) {
if (_left) {
_left->_parent = 0;
root = _left;
root->_color = BLACK;
} else if (_right) {
_right->_parent = 0;
root = _right;
root->_color = BLACK;
} // else that was the only node, so leave @a root @c NULL.
return root;
}
/* The node to be removed from the tree.
If @c this (the target node) has both children, we remove
its successor, which cannot have a left child and
put that node in place of the target node. Otherwise this
node has at most one child, so we can remove it.
Note that the successor of a node with a right child is always
a right descendant of the node. Therefore, remove_node
is an element of the tree rooted at this node.
Because of the initial special case checks, we know
that remove_node is @b not the root node.
*/
self* remove_node(_left && _right ? _next : this);
// This is the color of the node physically removed from the tree.
// Normally this is the color of @a remove_node
Color remove_color = remove_node->_color;
// Need to remember the direction from @a remove_node to @a splice_node
Direction d(NONE);
// The child node that will be promoted to replace the removed node.
// The choice of left or right is irrelevant, as remove_node has at
// most one child (and splice_node may be NIL if remove_node has no
// children).
self* splice_node(remove_node->_left
? remove_node->_left
: remove_node->_right
);
if (splice_node) {
// @c replace_with copies color so in this case the actual color
// lost is that of the splice_node.
remove_color = splice_node->_color;
remove_node->replaceWith(splice_node);
} else {
// No children on remove node so we can just clip it off the tree
// We update splice_node to maintain the invariant that it is
// the node where the physical removal occurred.
splice_node = remove_node->_parent;
// Keep @a d up to date.
d = splice_node->getChildDirection(remove_node);
splice_node->setChild(0, d);
}
// If the node to pull out of the tree isn't this one,
// then replace this node in the tree with that removed
// node in liu of copying the data over.
if (remove_node != this) {
// Don't leave @a splice_node referring to a removed node
if (splice_node == this) splice_node = remove_node;
this->replaceWith(remove_node);
}
root = splice_node->rebalanceAfterRemove(remove_color, d);
root->_color = BLACK;
return root;
}
/**
* Rebalance tree after a deletion
* Called on the spliced in node or its parent, whichever is not NIL.
* This modifies the tree structure only if @a c is @c BLACK.
*/
RBNode*
RBNode::rebalanceAfterRemove(
Color c, //!< The color of the removed node
Direction d //!< Direction of removed node from its parent
) {
self* root;
if (BLACK == c) { // only rebalance if too much black
self* n = this;
self* parent = n->_parent;
// If @a direction is set, then we need to start at a leaf psuedo-node.
// This is why we need @a parent, otherwise we could just use @a n.
if (NONE != d) {
parent = n;
n = 0;
}
while (parent) { // @a n is not the root
// If the current node is RED, we can just recolor and be done
if (n == RED) {
n->_color = BLACK;
break;
} else {
// Parameterizing the rebalance logic on the directions. We
// write for the left child case and flip directions for the
// right child case
Direction near(LEFT), far(RIGHT);
if (
(NONE == d && parent->getChildDirection(n) == RIGHT)
|| RIGHT == d
) {
near = RIGHT;
far = LEFT;
}
self* w = parent->getChild(far); // sibling(n)
if (w->_color == RED) {
w->_color = BLACK;
parent->_color = RED;
parent->rotate(near);
w = parent->getChild(far);
}
self* wfc = w->getChild(far);
if (w->getChild(near) == BLACK && wfc == BLACK) {
w->_color = RED;
n = parent;
parent = n->_parent;
d = NONE; // Cancel any leaf node logic
} else {
if (wfc->_color == BLACK) {
w->getChild(near)->_color = BLACK;
w->_color = RED;
w->rotate(far);
w = parent->getChild(far);
wfc = w->getChild(far); // w changed, update far child cache.
}
w->_color = parent->_color;
parent->_color = BLACK;
wfc->_color = BLACK;
parent->rotate(near);
break;
}
}
}
}
root = this->rippleStructureFixup();
return root;
}
/** Ensure that the local information associated with each node is
correct globally This should only be called on debug builds as it
breaks any efficiencies we have gained from our tree structure.
*/
int
RBNode::validate() {
# if 0
int black_ht = 0;
int black_ht1, black_ht2;
if (_left) {
black_ht1 = _left->validate();
}
else
black_ht1 = 1;
if (black_ht1 > 0 && _right)
black_ht2 = _right->validate();
else
black_ht2 = 1;
if (black_ht1 == black_ht2) {
black_ht = black_ht1;
if (this->_color == BLACK)
++black_ht;
else { // No red-red
if (_left == RED)
black_ht = 0;
else if (_right == RED)
black_ht = 0;
if (black_ht == 0)
std::cout << "Red-red child\n";
}
} else {
std::cout << "Height mismatch " << black_ht1 << " " << black_ht2 << "\n";
}
if (black_ht > 0 && !this->structureValidate())
black_ht = 0;
return black_ht;
# else
return 0;
# endif
}
/** Base template class for IP maps.
This class is templated by the @a N type which must be a subclass
of @c RBNode. This class carries information about the addresses stored
in the map. This includes the type, the common argument type, and
some utility methods to operate on the address.
*/
template <
typename N ///< Node type.
> struct IpMapBase {
friend class ::IpMap;
typedef IpMapBase self; ///< Self reference type.
typedef typename N::ArgType ArgType; ///< Import type.
typedef typename N::Metric Metric; ///< Import type.g482
IpMapBase() : _root(0) {}
~IpMapBase() { this->clear(); }
/** Mark a range.
All addresses in the range [ @a min , @a max ] are marked with @a data.
@return This object.
*/
self& mark(
ArgType min, ///< Minimum value in range.
ArgType max, ///< Maximum value in range.
void* data = 0 ///< Client data payload.
);
/** Unmark addresses.
All addresses in the range [ @a min , @a max ] are cleared
(removed from the map), no longer marked.
@return This object.
*/
self& unmark(
ArgType min,
ArgType max
);
/** Fill addresses.
This background fills using the range. All addresses in the
range that are @b not present in the map are added. No
previously present address is changed.
@note This is useful for filling in first match tables.
@return This object.
*/
self& fill(
ArgType min,
ArgType max,
void* data = 0
);
/** Test for membership.
@return @c true if the address is in the map, @c false if not.
If the address is in the map and @a ptr is not @c NULL, @c *ptr
is set to the client data for the address.
*/
bool contains(
ArgType target, ///< Search target value.
void **ptr = 0 ///< Client data return.
) const;
/** Remove all addresses in the map.
@note This is much faster than using @c unmark with a range of
all addresses.
@return This object.
*/
self& clear();
/** Lower bound for @a target. @return The node whose minimum value
is the largest that is not greater than @a target, or @c NULL if
all minimum values are larger than @a target.
*/
N* lowerBound(ArgType target);
/** Insert @a n after @a spot.
Caller is responsible for ensuring that @a spot is in this container
and the proper location for @a n.
*/
void insertAfter(
N* spot, ///< Node in list.
N* n ///< Node to insert.
);
/** Insert @a n before @a spot.
Caller is responsible for ensuring that @a spot is in this container
and the proper location for @a n.
*/
void insertBefore(
N* spot, ///< Node in list.
N* n ///< Node to insert.
);
/// Add node @a n as the first node.
void prepend(
N* n
);
/// Add node @a n as the last node.
void append(
N* n
);
/// Remove a node.
void remove(
N* n ///< Node to remove.
);
/** Validate internal data structures.
@note Intended for debugging, not general client use.
*/
void validate();
/// @return The number of distinct ranges.
size_t getCount() const;
/// Print all spans.
/// @return This map.
self& print();
// Helper methods.
N* prev(RBNode* n) const { return static_cast<N*>(n->_prev); }
N* next(RBNode* n) const { return static_cast<N*>(n->_next); }
N* parent(RBNode* n) const { return static_cast<N*>(n->_parent); }
N* left(RBNode* n) const { return static_cast<N*>(n->_left); }
N* right(RBNode* n) const { return static_cast<N*>(n->_right); }
N* getHead() { return static_cast<N*>(_list.getHead()); }
N* getTail() { return static_cast<N*>(_list.getTail()); }
N* _root; ///< Root node.
/// In order list of nodes.
/// For ugly compiler reasons, this is a list of base class pointers
/// even though we really store @a N instances on it.
typedef IntrusiveDList<RBNode, &RBNode::_next, &RBNode::_prev> NodeList;
/// This keeps track of all allocated nodes in order.
/// Iteration depends on this list being maintained.
NodeList _list;
};
template < typename N > N*
IpMapBase<N>::lowerBound(ArgType target) {
N* n = _root; // current node to test.
N* zret = 0; // best node so far.
while (n) {
if (target < n->_min) n = left(n);
else {
zret = n; // this is a better candidate.
if (n->_max < target) n = right(n);
else break;
}
}
return zret;
}
template < typename N > IpMapBase<N>&
IpMapBase<N>::clear() {
// Delete everything.
N* n = static_cast<N*>(_list.getHead());
while (n) {
N* x = n;
n = next(n);
delete x;
}
_list.clear();
_root = 0;
return *this;
}
template < typename N > IpMapBase<N>&
IpMapBase<N>::fill(ArgType rmin, ArgType rmax, void* payload) {
// Rightmost node of interest with n->_min <= min.
N* n = this->lowerBound(rmin);
N* x = 0; // New node (if any).
// Need copies because we will modify these.
Metric min = N::deref(rmin);
Metric max = N::deref(rmax);
// Handle cases involving a node of interest to the left of the
// range.
if (n) {
if (n->_min < min) {
Metric min_1 = min;
N::dec(min_1); // dec is OK because min isn't zero.
if (n->_max < min_1) { // no overlap or adj.
n = next(n);
} else if (n->_max >= max) { // incoming range is covered, just discard.
return *this;
} else if (n->_data != payload) { // different payload, clip range on left.
min = n->_max;
N::inc(min);
n = next(n);
} else { // skew overlap with same payload, use node and continue.
x = n;
n = next(n);
}
}
} else {
n = this->getHead();
}
// Work through the rest of the nodes of interest.
// Invariant: n->_min >= min
// Careful here -- because max_plus1 might wrap we need to use it only
// if we can certain it didn't. This is done by ordering the range
// tests so that when max_plus1 is used when we know there exists a
// larger value than max.
Metric max_plus1 = max;
N::inc(max_plus1);
/* Notes:
- max (and thence max_plus1) never change during the loop.
- we must have either x != 0 or adjust min but not both.
*/
while (n) {
if (n->_data == payload) {
if (x) {
if (n->_max <= max) {
// next range is covered, so we can remove and continue.
this->remove(n);
n = next(x);
} else if (n->_min <= max_plus1) {
// Overlap or adjacent with larger max - absorb and finish.
x->setMax(n->_max);
this->remove(n);
return *this;
} else {
// have the space to finish off the range.
x->setMax(max);
return *this;
}
} else { // not carrying a span.
if (n->_max <= max) { // next range is covered - use it.
x = n;
x->setMin(min);
n = next(n);
} else if (n->_min <= max_plus1) {
n->setMin(min);
return *this;
} else { // no overlap, space to complete range.
this->insertBefore(n, new N(min, max, payload));
return *this;
}
}
} else { // different payload
if (x) {
if (max < n->_min) { // range ends before n starts, done.
x->setMax(max);
return *this;
} else if (max <= n->_max) { // range ends before n, done.
x->setMaxMinusOne(n->_min);
return *this;
} else { // n is contained in range, skip over it.
x->setMaxMinusOne(n->_min);
x = 0;
min = n->_max;
N::inc(min); // OK because n->_max maximal => next is null.
n = next(n);
}
} else { // no carry node.
if (max < n->_min) { // entirely before next span.
this->insertBefore(n, new N(min, max, payload));
return *this;
} else {
if (min < n->_min) { // leading section, need node.
N* y = new N(min, n->_min, payload);
y->decrementMax();
this->insertBefore(n, y);
}
if (max <= n->_max) // nothing past node
return *this;
min = n->_max;
N::inc(min);
n = next(n);
}
}
}
}
// Invariant: min is larger than any existing range maximum.
if (x) {
x->setMax(max);
} else {
this->append(new N(min, max, payload));
}
return *this;
}
template < typename N > IpMapBase<N>&
IpMapBase<N>::mark(ArgType min, ArgType max, void* payload) {
N* n = this->lowerBound(min); // current node.
N* x = 0; // New node, gets set if we re-use an existing one.
N* y = 0; // Temporary for removing and advancing.
// Several places it is handy to have max+1. Must be careful
// about wrapping.
Metric max_plus = N::deref(max);
N::inc(max_plus);
/* Some subtlety - for IPv6 we overload the compare operators to do
the right thing, but we can't overload pointer
comparisons. Therefore we carefully never compare pointers in
this logic. Only @a min and @a max can be pointers, everything
else is an instance or a reference. Since there's no good reason
to compare @a min and @a max this isn't particularly tricky, but
it's good to keep in mind. If we were somewhat more clever, we
would provide static less than and equal operators in the
template class @a N and convert all the comparisons to use only
those two via static function call.
*/
/* We have lots of special cases here primarily to minimize memory
allocation by re-using an existing node as often as possible.
*/
if (n) {
// Watch for wrap.
Metric min_1 = N::deref(min);
N::dec(min_1);
if (n->_min == min) {
// Could be another span further left which is adjacent.
// Coalesce if the data is the same. min_1 is OK because
// if there is a previous range, min is not zero.
N* p = prev(n);
if (p && p->_data == payload && p->_max == min_1) {
x = p;
n = x; // need to back up n because frame of reference moved.
x->setMax(max);
} else if (n->_max <= max) {
// Span will be subsumed by request span so it's available for use.
x = n;
x->setMax(max).setData(payload);
} else if (n->_data == payload) {
return *this; // request is covered by existing span with the same data
} else {
// request span is covered by existing span.
x = new N(min, max, payload); //
n->setMin(max_plus); // clip existing.
this->insertBefore(n, x);
return *this;
}
} else if (n->_data == payload && n->_max >= min_1) {
// min_1 is safe here because n->_min < min so min is not zero.
x = n;
// If the existing span covers the requested span, we're done.
if (x->_max >= max) return *this;
x->setMax(max);
} else if (n->_max <= max) {
// Can only have left skew overlap, otherwise disjoint.
// Clip if overlap.
if (n->_max >= min) n->setMax(min_1);
else if (next(n) && n->_max <= max) {
// request region covers next span so we can re-use that node.
x = next(n);
x->setMin(min).setMax(max).setData(payload);
n = x; // this gets bumped again, which is correct.
}
} else {
// Existing span covers new span but with a different payload.
// We split it, put the new span in between and we're done.
// max_plus is valid because n->_max > max.
N* r;
x = new N(min, max, payload);
r = new N(max_plus, n->_max, n->_data);
n->setMax(min_1);
this->insertAfter(n, x);
this->insertAfter(x, r);
return *this; // done.
}
n = next(n); // lower bound span handled, move on.
if (!x) {
x = new N(min, max, payload);
if (n) this->insertBefore(n, x);
else this->append(x); // note that since n == 0 we'll just return.
}
} else if (0 != (n = this->getHead()) && // at least one node in tree.
n->_data == payload && // payload matches
(n->_max <= max || n->_min <= max_plus) // overlap or adj.
) {
// Same payload with overlap, re-use.
x = n;
n = next(n);
x->setMin(min);
if (x->_max < max) x->setMax(max);
} else {
x = new N(min, max, payload);
this->prepend(x);
}
// At this point, @a x has the node for this span and all existing spans of
// interest start at or past this span.
while (n) {
if (n->_max <= max) { // completely covered, drop span, continue
y = n;
n = next(n);
this->remove(y);
} else if (max_plus < n->_min) { // no overlap, done.
break;
} else if (n->_data == payload) { // skew overlap or adj., same payload
x->setMax(n->_max);
y = n;
n = next(n);
this->remove(y);
} else if (n->_min <= max) { // skew overlap different payload
n->setMin(max_plus);
break;
}
}
return *this;
}
template <typename N> IpMapBase<N>&
IpMapBase<N>::unmark(ArgType min, ArgType max) {
N* n = this->lowerBound(min);
N* x; // temp for deletes.
// Need to handle special case where first span starts to the left.
if (n && n->_min < min) {
if (n->_max >= min) { // some overlap
if (n->_max > max) {
// request span is covered by existing span - split existing span.
x = new N(max, N::argue(n->_max), n->_data);
x->incrementMin();
n->setMaxMinusOne(N::deref(min));
this->insertAfter(n, x);
return *this; // done.
} else {
n->setMaxMinusOne(N::deref(min)); // just clip overlap.
}
} // else disjoint so just skip it.
n = next(n);
}
// n and all subsequent spans start at >= min.
while (n) {
x = n;
n = next(n);
if (x->_max <= max) {
this->remove(x);
} else {
if (x->_min <= max) { // clip overlap
x->setMinPlusOne(N::deref(max));
}
break;
}
}
return *this;
}
template <typename N> void
IpMapBase<N>::insertAfter(N* spot, N* n) {
N* c = right(spot);
if (!c) spot->setChild(n, N::RIGHT);
else spot->_next->setChild(n, N::LEFT);
_list.insertAfter(spot, n);
_root = static_cast<N*>(n->rebalanceAfterInsert());
}
template <typename N> void
IpMapBase<N>::insertBefore(N* spot, N* n) {
N* c = left(spot);
if (!c) spot->setChild(n, N::LEFT);
else spot->_prev->setChild(n, N::RIGHT);
_list.insertBefore(spot, n);
_root = static_cast<N*>(n->rebalanceAfterInsert());
}
template <typename N> void
IpMapBase<N>::prepend(N* n) {
if (!_root) _root = n;
else _root = static_cast<N*>(_list.getHead()->setChild(n, N::LEFT)->rebalanceAfterInsert());
_list.prepend(n);
}
template <typename N> void
IpMapBase<N>::append(N* n) {
if (!_root) _root = n;
else _root = static_cast<N*>(_list.getTail()->setChild(n, N::RIGHT)->rebalanceAfterInsert());
_list.append(n);
}
template <typename N> void
IpMapBase<N>::remove(N* n) {
_root = static_cast<N*>(n->remove());
_list.take(n);
delete n;
}
template <typename N> bool
IpMapBase<N>::contains(ArgType x, void** ptr) const {
bool zret = false;
N* n = _root; // current node to test.
while (n) {
if (x < n->_min) n = left(n);
else if (n->_max < x) n = right(n);
else {
if (ptr) *ptr = n->_data;
zret = true;
break;
}
}
return zret;
}
template < typename N > size_t IpMapBase<N>::getCount() const { return _list.getCount(); }
//----------------------------------------------------------------------------
template <typename N> void
IpMapBase<N>::validate() {
# if 0
if (_root) _root->validate();
for ( Node* n = _list.getHead() ; n ; n = n->_next ) {
Node* x;
if (0 != (x = n->_next)) {
if (x->_prev != n)
std::cout << "Broken list" << std::endl;
if (n->_max >= x->_min)
std::cout << "Out of order - " << n->_max << " > " << x->_min << std::endl;
if (n->_parent == n || n->_left == n || n->_right == n)
std::cout << "Looped node" << std::endl;
}
}
# endif
}
template <typename N> IpMapBase<N>&
IpMapBase<N>::print() {
# if 0
for ( Node* n = _list.getHead() ; n ; n = n->_next ) {
std::cout
<< n << ": " << n->_min << '-' << n->_max << " [" << n->_data << "] "
<< (n->_color == Node::BLACK ? "Black " : "Red ") << "P=" << n->_parent << " L=" << n->_left << " R=" << n->_right
<< std::endl;
}
# endif
return *this;
}
//----------------------------------------------------------------------------
typedef Interval<in_addr_t, in_addr_t> Ip4Span;
/** Node for IPv4 map.
We store the address in host order in the @a _min and @a _max
members for performance. We store copies in the @a _sa member
for API compliance (which requires @c sockaddr* access).
*/
class Ip4Node : public IpMap::Node, protected Ip4Span {
friend struct IpMapBase<Ip4Node>;
public:
typedef Ip4Node self; ///< Self reference type.
/// Construct with values.
Ip4Node(
ArgType min, ///< Minimum address (host order).
ArgType max, ///< Maximum address (host order).
void* data ///< Client data.
) : Node(data), Ip4Span(min, max) {
ats_ip4_set(ats_ip_sa_cast(&_sa._min), htonl(min));
ats_ip4_set(ats_ip_sa_cast(&_sa._max), htonl(max));
}
/// @return The minimum value of the interval.
virtual sockaddr const* min() const {
return ats_ip_sa_cast(&_sa._min);
}
/// @return The maximum value of the interval.
virtual sockaddr const* max() const {
return ats_ip_sa_cast(&_sa._max);
}
/// Set the client data.
self& setData(
void* data ///< Client data.
) {
_data = data;
return *this;
}
protected:
/// Set the minimum value of the interval.
/// @return This interval.
self& setMin(
ArgType min ///< Minimum value (host order).
) {
_min = min;
_sa._min.sin_addr.s_addr = htonl(min);
return *this;
}
/// Set the maximum value of the interval.
/// @return This interval.
self& setMax(
ArgType max ///< Maximum value (host order).
) {
_max = max;
_sa._max.sin_addr.s_addr = htonl(max);
return *this;
}
/** Set the maximum value to one less than @a max.
@return This object.
*/
self& setMaxMinusOne(
ArgType max ///< One more than maximum value.
) {
return this->setMax(max-1);
}
/** Set the minimum value to one more than @a min.
@return This object.
*/
self& setMinPlusOne(
ArgType min ///< One less than minimum value.
) {
return this->setMin(min+1);
}
/** Decremement the maximum value in place.
@return This object.
*/
self& decrementMax() {
this->setMax(_max-1);
return *this;
}
/** Increment the minimum value in place.
@return This object.
*/
self& incrementMin() {
this->setMin(_min+1);
return *this;
}
/// Increment a metric.
static void inc(
Metric& m ///< Incremented in place.
) {
++m;
}
/// Decrement a metric.
static void dec(
Metric& m ///< Decremented in place.
) {
--m;
}
/// @return Dereferenced @a addr.
static Metric deref(
ArgType addr ///< Argument to dereference.
) {
return addr;
}
/// @return The argument type for the @a metric.
static ArgType argue(
Metric const& metric
) {
return metric;
}
struct {
sockaddr_in _min;
sockaddr_in _max;
} _sa; ///< Addresses in API compliant form.
};
class Ip4Map : public IpMapBase<Ip4Node> {
friend class ::IpMap;
};
//----------------------------------------------------------------------------
typedef Interval<sockaddr_in6> Ip6Span;
/** Node for IPv6 map.
*/
class Ip6Node : public IpMap::Node, protected Ip6Span {
friend struct IpMapBase<Ip6Node>;
public:
typedef Ip6Node self; ///< Self reference type.
/// Override @c ArgType from @c Interval because the convention
/// is to use a pointer, not a reference.
typedef Metric const* ArgType;
/// Construct from pointers.
Ip6Node(
ArgType min, ///< Minimum address (network order).
ArgType max, ///< Maximum address (network order).
void* data ///< Client data.
) : Node(data), Ip6Span(*min, *max) {
}
/// Construct with values.
Ip6Node(
Metric const& min, ///< Minimum address (network order).
Metric const& max, ///< Maximum address (network order).
void* data ///< Client data.
) : Node(data), Ip6Span(min, max) {
}
/// @return The minimum value of the interval.
virtual sockaddr const* min() const {
return ats_ip_sa_cast(&_min);
}
/// @return The maximum value of the interval.
virtual sockaddr const* max() const {
return ats_ip_sa_cast(&_max);
}
/// Set the client data.
self& setData(
void* data ///< Client data.
) {
_data = data;
return *this;
}
protected:
/// Set the minimum value of the interval.
/// @return This interval.
self& setMin(
ArgType min ///< Minimum value (host order).
) {
ats_ip_copy(ats_ip_sa_cast(&_min), ats_ip_sa_cast(min));
return *this;
}
/// Set the minimum value of the interval.
/// @note Convenience overload.
/// @return This interval.
self& setMin(
Metric const& min ///< Minimum value (host order).
) {
return this->setMin(&min);
}
/// Set the maximum value of the interval.
/// @return This interval.
self& setMax(
ArgType max ///< Maximum value (host order).
) {
ats_ip_copy(ats_ip_sa_cast(&_max), ats_ip_sa_cast(max));
return *this;
}
/// Set the maximum value of the interval.
/// @note Convenience overload.
/// @return This interval.
self& setMax(
Metric const& max ///< Maximum value (host order).
) {
return this->setMax(&max);
}
/** Set the maximum value to one less than @a max.
@return This object.
*/
self& setMaxMinusOne(
Metric const& max ///< One more than maximum value.
) {
this->setMax(max);
dec(_max);
return *this;
}
/** Set the minimum value to one more than @a min.
@return This object.
*/
self& setMinPlusOne(
Metric const& min ///< One less than minimum value.
) {
this->setMin(min);
inc(_min);
return *this;
}
/** Decremement the maximum value in place.
@return This object.
*/
self& decrementMax() { dec(_max); return *this; }
/** Increment the mininimum value in place.
@return This object.
*/
self& incrementMin() { inc(_min); return *this; }
/// Increment a metric.
static void inc(
Metric& m ///< Incremented in place.
) {
uint8_t* addr = m.sin6_addr.s6_addr;
uint8_t* b = addr + TS_IP6_SIZE;
// Ripple carry. Walk up the address incrementing until we don't
// have a carry.
do {
++*--b;
} while (b > addr && 0 == *b);
}
/// Decrement a metric.
static void dec(
Metric& m ///< Decremented in place.
) {
uint8_t* addr = m.sin6_addr.s6_addr;
uint8_t* b = addr + TS_IP6_SIZE;
// Ripple borrow. Walk up the address decrementing until we don't
// have a borrow.
do {
--*--b;
} while (b > addr && static_cast<uint8_t>(0xFF) == *b);
}
/// @return Dereferenced @a addr.
static Metric const& deref(
ArgType addr ///< Argument to dereference.
) {
return *addr;
}
/// @return The argument type for the @a metric.
static ArgType argue(
Metric const& metric
) {
return &metric;
}
};
// We declare this after the helper operators and inside this namespace
// so that the template uses these for comparisons.
class Ip6Map : public IpMapBase<Ip6Node> {
friend class ::IpMap;
};
}} // end ts::detail
//----------------------------------------------------------------------------
IpMap::~IpMap() {
delete _m4;
delete _m6;
}
inline ts::detail::Ip4Map*
IpMap::force4() {
if (!_m4) _m4 = new ts::detail::Ip4Map;
return _m4;
}
inline ts::detail::Ip6Map*
IpMap::force6() {
if (!_m6) _m6 = new ts::detail::Ip6Map;
return _m6;
}
bool
IpMap::contains(sockaddr const* target, void** ptr) const {
bool zret = false;
if (AF_INET == target->sa_family) {
zret = _m4 && _m4->contains(ntohl(ats_ip4_addr_cast(target)), ptr);
} else if (AF_INET6 == target->sa_family) {
zret = _m6 && _m6->contains(ats_ip6_cast(target), ptr);
}
return zret;
}
bool
IpMap::contains(in_addr_t target, void** ptr) const {
return _m4 && _m4->contains(ntohl(target), ptr);
}
IpMap&
IpMap::mark(
sockaddr const* min,
sockaddr const* max,
void* data
) {
ink_assert(min->sa_family == max->sa_family);
if (AF_INET == min->sa_family) {
this->force4()->mark(
ntohl(ats_ip4_addr_cast(min)),
ntohl(ats_ip4_addr_cast(max)),
data
);
} else if (AF_INET6 == min->sa_family) {
this->force6()->mark(ats_ip6_cast(min), ats_ip6_cast(max), data);
}
return *this;
}
IpMap&
IpMap::mark(in_addr_t min, in_addr_t max, void* data) {
this->force4()->mark(ntohl(min), ntohl(max), data);
return *this;
}
IpMap&
IpMap::unmark(
sockaddr const* min,
sockaddr const* max
) {
ink_assert(min->sa_family == max->sa_family);
if (AF_INET == min->sa_family) {
if (_m4)
_m4->unmark(
ntohl(ats_ip4_addr_cast(min)),
ntohl(ats_ip4_addr_cast(max))
);
} else if (AF_INET6 == min->sa_family) {
if (_m6) _m6->unmark(ats_ip6_cast(min), ats_ip6_cast(max));
}
return *this;
}
IpMap&
IpMap::unmark(in_addr_t min, in_addr_t max) {
if (_m4) _m4->unmark(ntohl(min), ntohl(max));
return *this;
}
IpMap&
IpMap::fill(
sockaddr const* min,
sockaddr const* max,
void* data
) {
ink_assert(min->sa_family == max->sa_family);
if (AF_INET == min->sa_family) {
this->force4()->fill(
ntohl(ats_ip4_addr_cast(min)),
ntohl(ats_ip4_addr_cast(max)),
data
);
} else if (AF_INET6 == min->sa_family) {
this->force6()->fill(ats_ip6_cast(min), ats_ip6_cast(max), data);
}
return *this;
}
IpMap&
IpMap::fill(in_addr_t min, in_addr_t max, void* data) {
this->force4()->fill(ntohl(min), ntohl(max), data);
return *this;
}
size_t
IpMap::getCount() const {
size_t zret = 0;
if (_m4) zret += _m4->getCount();
if (_m6) zret += _m6->getCount();
return zret;
}
IpMap&
IpMap::clear() {
if (_m4) _m4->clear();
if (_m6) _m6->clear();
return *this;
}
IpMap::iterator
IpMap::begin() {
Node* x = 0;
if (_m4) x = _m4->getHead();
if (!x && _m6) x = _m6->getHead();
return iterator(this, x);
}
IpMap::iterator&
IpMap::iterator::operator ++ () {
if (_node) {
// If we go past the end of the list see if it was the v4 list
// and if so, move to the v6 list (if it's there).
Node* x = static_cast<Node*>(_node->_next);
if (!x && _tree->_m4 && _tree->_m6 && _node == _tree->_m4->getTail())
x = _tree->_m6->getHead();
_node = x;
}
return *this;
}
inline IpMap::iterator&
IpMap::iterator::operator--() {
if (_node) {
// At a node, try to back up. Handle the case where we back over the
// start of the v6 addresses and switch to the v4, if there are any.
Node* x = static_cast<Node*>(_node->_prev);
if (!x && _tree->_m4 && _tree->_m6 && _node == _tree->_m6->getHead())
x = _tree->_m4->getTail();
_node = x;
} else if (_tree) {
// We were at the end. Back up to v6 if possible, v4 if not.
if (_tree->_m6) _node = _tree->_m6->getTail();
if (!_node && _tree->_m4) _node = _tree->_m4->getTail();
}
return *this;
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------