| extern crate gbdt; |
| |
| use gbdt::decision_tree::ValueType; |
| use gbdt::gradient_boost::GBDT; |
| use gbdt::input; |
| use std::fs::File; |
| use std::io::{BufRead, BufReader}; |
| |
| fn main() { |
| // Use xg.py in xgb-data/xgb_multi_softmax to generate a model and get prediction results from xgboost. |
| // Call this command to convert xgboost model: |
| // python examples/convert_xgboost.py xgb-data/xgb_multi_softmax/xgb.model "multi:softmax" xgb-data/xgb_multi_softmax/gbdt.model |
| // load model |
| let gbdt = GBDT::from_xgoost_dump("xgb-data/xgb_multi_softmax/gbdt.model", "multi:softmax") |
| .expect("failed to load model"); |
| |
| // load test data |
| let test_file = "xgb-data/xgb_multi_softmax/dermatology.data.test"; |
| let mut input_format = input::InputFormat::csv_format(); |
| input_format.set_label_index(34); |
| let test_data = input::load(test_file, input_format).expect("failed to load test data"); |
| |
| // inference |
| println!("start prediction"); |
| let (labels, _probs) = gbdt.predict_multiclass(&test_data, 6); |
| assert_eq!(labels.len(), test_data.len()); |
| |
| // compare to xgboost prediction results |
| let predict_result = "xgb-data/xgb_multi_softmax/pred.csv"; |
| |
| let mut xgb_results = Vec::new(); |
| let file = File::open(predict_result).expect("failed to load pred.csv"); |
| let reader = BufReader::new(file); |
| for line in reader.lines() { |
| let text = line.expect("failed to read data from pred.csv"); |
| let value: ValueType = text.parse().expect("failed to parse data from pred.csv"); |
| xgb_results.push(value); |
| } |
| |
| let mut max_diff: ValueType = -1.0; |
| for (value1, value2) in labels.iter().zip(xgb_results.iter()) { |
| println!("{} {}", value1, value2); |
| let diff = (*value1 as ValueType - *value2).abs(); |
| if diff > max_diff { |
| max_diff = diff; |
| } |
| } |
| |
| println!( |
| "Compared to results from xgboost, max error is: {:.10}", |
| max_diff |
| ); |
| assert!(max_diff < 0.01); |
| } |