blob: e812dd64625386363beb075580da2aa7ca3c57db [file] [log] [blame]
extern crate gbdt;
use gbdt::decision_tree::ValueType;
use gbdt::gradient_boost::GBDT;
use gbdt::input;
use std::fs::File;
use std::io::{BufRead, BufReader};
fn main() {
// Use xg.py in xgb-data/xgb_multi_softmax to generate a model and get prediction results from xgboost.
// Call this command to convert xgboost model:
// python examples/convert_xgboost.py xgb-data/xgb_multi_softmax/xgb.model "multi:softmax" xgb-data/xgb_multi_softmax/gbdt.model
// load model
let gbdt = GBDT::from_xgoost_dump("xgb-data/xgb_multi_softmax/gbdt.model", "multi:softmax")
.expect("failed to load model");
// load test data
let test_file = "xgb-data/xgb_multi_softmax/dermatology.data.test";
let mut input_format = input::InputFormat::csv_format();
input_format.set_label_index(34);
let test_data = input::load(test_file, input_format).expect("failed to load test data");
// inference
println!("start prediction");
let (labels, _probs) = gbdt.predict_multiclass(&test_data, 6);
assert_eq!(labels.len(), test_data.len());
// compare to xgboost prediction results
let predict_result = "xgb-data/xgb_multi_softmax/pred.csv";
let mut xgb_results = Vec::new();
let file = File::open(predict_result).expect("failed to load pred.csv");
let reader = BufReader::new(file);
for line in reader.lines() {
let text = line.expect("failed to read data from pred.csv");
let value: ValueType = text.parse().expect("failed to parse data from pred.csv");
xgb_results.push(value);
}
let mut max_diff: ValueType = -1.0;
for (value1, value2) in labels.iter().zip(xgb_results.iter()) {
println!("{} {}", value1, value2);
let diff = (*value1 as ValueType - *value2).abs();
if diff > max_diff {
max_diff = diff;
}
}
println!(
"Compared to results from xgboost, max error is: {:.10}",
max_diff
);
assert!(max_diff < 0.01);
}