blob: e18b4e8fef626cb56830047353df89d91b301e68 [file] [log] [blame] [view]
---
layout: global
title: SystemML Algorithms Reference - Bibliography
displayTitle: <a href="algorithms-reference.html">SystemML Algorithms Reference</a>
---
<!--
{% comment %}
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to you under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
{% endcomment %}
-->
# 7. Bibliography
**[AcockStavig1979]** Alan CAcock and Gordon
RStavig, A Measure of Association for Nonparametric
Statistics, Social Forces, Oxford University
Press, Volume 57, Number 4, June, 1979,
1381--1386.
**[AgrawalKSX2002]** Rakesh Agrawal and
Jerry Kiernan and Ramakrishnan Srikant and Yirong Xu,
Hippocratic Databases, Proceedings of the 28-th
International Conference on Very Large Data Bases (VLDB 2002),
Hong Kong, China, August 20--23, 2002,
143--154.
**[Agresti2002]** Alan Agresti, Categorical
Data Analysis, Second Edition, Wiley Series in
Probability and Statistics, Wiley-Interscience
2002, 710.
**[AloiseDHP2009]** Daniel Aloise and Amit
Deshpande and Pierre Hansen and Preyas Popat, NP-hardness of
Euclidean Sum-of-squares Clustering, Machine Learning,
Kluwer Academic Publishers, Volume 75, Number 2,
May, 2009, 245--248.
**[ArthurVassilvitskii2007]**
k-means++: The Advantages of Careful Seeding, David
Arthur and Sergei Vassilvitskii, Proceedings of the 18th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007),
January 7--9, 2007, New Orleans, LA,
USA, 1027--1035.
**[Breiman2001]** L. Breiman. Random forests. Machine Learning, 45(1):532, 2001.
**[BreimanFOS1984]** L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, 1984.
**[Chapelle2007]** Olivier Chapelle, Training a Support Vector Machine in the Primal, Neural Computation, 2007.
**[Cochran1954]** William GCochran,
Some Methods for Strengthening the Common $\chi^2$ Tests,
Biometrics, Volume 10, Number 4, December
1954, 417--451.
**[Collett2003]** D. Collett. Modelling Survival Data in Medical Research, Second Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 2003.
**[Gill2000]** Jeff Gill, Generalized Linear
Models: A Unified Approach, Sage University Papers Series on
Quantitative Applications in the Social Sciences, Number 07-134,
2000, Sage Publications, 101.
**[Hartigan1975]** John AHartigan,
Clustering Algorithms, John Wiley~&~Sons Inc.,
Probability and Mathematical Statistics, April
1975, 365.
**[Hsieh2008]** C-J Hsieh, K-W Chang, C-J Lin, S. S. Keerthi and S. Sundararajan, A Dual Coordinate Descent Method for Large-scale Linear SVM, International Conference of Machine Learning (ICML), 2008.
**[Lin2008]** Chih-Jen Lin and Ruby CWeng and
SSathiya Keerthi, Trust Region Newton Method for
Large-Scale Logistic Regression, Journal of Machine Learning
Research, April, 2008, Volume 9, 627--650.
**[McCallum1998]** A. McCallum and K. Nigam, A comparison of event models for naive bayes text classification, AAAI-98 workshop on learning for text categorization, 1998.
**[McCullagh1989]** Peter McCullagh and John Ashworth
Nelder, Generalized Linear Models, Second Edition,
Monographs on Statistics and Applied Probability, Number 37,
1989, Chapman & Hall/CRC, 532.
**[Nelder1972]** John Ashworth Nelder and Robert
William Maclagan Wedderburn, Generalized Linear Models,
Journal of the Royal Statistical Society, Series A
(General), 1972, Volume 135, Number 3,
370--384.
**[Nocedal1999]** J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, 1999.
**[Nocedal2006]** Optimization Numerical Optimization,
Jorge Nocedal and Stephen Wright, Springer Series
in Operations Research and Financial Engineering, 664,
Second Edition, Springer, 2006.
**[PandaHBB2009]** B. Panda, J. Herbach, S. Basu, and R. J. Bayardo. PLANET: massively parallel learning of tree ensembles with mapreduce. PVLDB, 2(2):1426 1437, 2009.
**[Russell2009]** S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.
**[Scholkopf1995]** B. Scholkopf, C. Burges and V. Vapnik, Extracting Support Data for a Given Task, International Conference on Knowledge Discovery and Data Mining (ICDM), 1995.
**[Stevens1946]** Stanley Smith Stevens,
On the Theory of Scales of Measurement, Science
June 7, 1946, Volume 103, Number 2684,
677--680.
**[Vetterling1992]**
W. T. Vetterling and B. P. Flannery,
Multidimensions in Numerical Recipes in C - The Art in Scientific Computing, W. H. Press and S. A. Teukolsky (eds.), Cambridge University Press, 1992.
**[ZhouWSP08]**
Y. Zhou, D. M. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering for the Netflix prize.
In Algorithmic Aspects in Information and Management, 4th International Conference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceedings, pages 337348, 2008.