| commit | 96b47fd10e14c0274df4ac991ac9de13cb43aca5 | [log] [tgz] |
|---|---|---|
| author | Kyle Krueger <kyle.s.krueger@gmail.com> | Sun May 07 19:08:37 2023 +0200 |
| committer | baunsgaard <baunsgaard@tu-berlin.de> | Tue May 30 11:04:34 2023 +0200 |
| tree | 48c23e70f6af64a973594c26e834f77fadb43dc6 | |
| parent | 7f333a4f6558e10a6d50cc66911b6eb285df2c13 [diff] |
[SYSTEMDS-3528] Refine allocation of GitHub Artifacts This commit change the allocation of the GitHub artifacts to remove the individual sub tests artifacts once the entire code coverage is constructed. The PR sets a policy that delete the code coverage on the main branch after 30 days, PRs 7 days, and forks 3 days. Closes #1820
Overview: SystemDS is an open source ML system for the end-to-end data science lifecycle from data integration, cleaning, and feature engineering, over efficient, local and distributed ML model training, to deployment and serving. To this end, we aim to provide a stack of declarative languages with R-like syntax for (1) the different tasks of the data-science lifecycle, and (2) users with different expertise. These high-level scripts are compiled into hybrid execution plans of local, in-memory CPU and GPU operations, as well as distributed operations on Apache Spark. In contrast to existing systems - that either provide homogeneous tensors or 2D Datasets - and in order to serve the entire data science lifecycle, the underlying data model are DataTensors, i.e., tensors (multi-dimensional arrays) whose first dimension may have a heterogeneous and nested schema.
Quick Start Install, Quick Start and Hello World
Documentation: SystemDS Documentation
Python Documentation Python SystemDS Documentation
Issue Tracker Jira Dashboard
Status and Build: SystemDS is renamed from SystemML which is an Apache Top Level Project. To build from source visit SystemDS Install from source