| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import pandas as pd |
| import pytest |
| |
| from superset.exceptions import InvalidPostProcessingError |
| from superset.utils import pandas_postprocessing as pp |
| from superset.utils.pandas_postprocessing.utils import FLAT_COLUMN_SEPARATOR |
| from tests.unit_tests.fixtures.dataframes import ( |
| multiple_metrics_df, |
| single_metric_df, |
| timeseries_df, |
| timeseries_with_gap_df, |
| ) |
| from tests.unit_tests.pandas_postprocessing.utils import series_to_list |
| |
| |
| def test_cum_should_not_side_effect(): |
| _timeseries_df = timeseries_df.copy() |
| pp.cum( |
| df=timeseries_df, |
| columns={"y": "y2"}, |
| operator="sum", |
| ) |
| assert _timeseries_df.equals(timeseries_df) |
| |
| |
| def test_cum(): |
| # create new column (cumsum) |
| post_df = pp.cum( |
| df=timeseries_df, |
| columns={"y": "y2"}, |
| operator="sum", |
| ) |
| assert post_df.columns.tolist() == ["label", "y", "y2"] |
| assert series_to_list(post_df["label"]) == ["x", "y", "z", "q"] |
| assert series_to_list(post_df["y"]) == [1.0, 2.0, 3.0, 4.0] |
| assert series_to_list(post_df["y2"]) == [1.0, 3.0, 6.0, 10.0] |
| |
| # overwrite column (cumprod) |
| post_df = pp.cum( |
| df=timeseries_df, |
| columns={"y": "y"}, |
| operator="prod", |
| ) |
| assert post_df.columns.tolist() == ["label", "y"] |
| assert series_to_list(post_df["y"]) == [1.0, 2.0, 6.0, 24.0] |
| |
| # overwrite column (cummin) |
| post_df = pp.cum( |
| df=timeseries_df, |
| columns={"y": "y"}, |
| operator="min", |
| ) |
| assert post_df.columns.tolist() == ["label", "y"] |
| assert series_to_list(post_df["y"]) == [1.0, 1.0, 1.0, 1.0] |
| |
| # invalid operator |
| with pytest.raises(InvalidPostProcessingError): |
| pp.cum( |
| df=timeseries_df, |
| columns={"y": "y"}, |
| operator="abc", |
| ) |
| |
| |
| def test_cum_with_gap(): |
| # create new column (cumsum) |
| post_df = pp.cum( |
| df=timeseries_with_gap_df, |
| columns={"y": "y2"}, |
| operator="sum", |
| ) |
| assert post_df.columns.tolist() == ["label", "y", "y2"] |
| assert series_to_list(post_df["label"]) == ["x", "y", "z", "q"] |
| assert series_to_list(post_df["y"]) == [1.0, 2.0, None, 4.0] |
| assert series_to_list(post_df["y2"]) == [1.0, 3.0, 3.0, 7.0] |
| |
| |
| def test_cum_after_pivot_with_single_metric(): |
| pivot_df = pp.pivot( |
| df=single_metric_df, |
| index=["dttm"], |
| columns=["country"], |
| aggregates={"sum_metric": {"operator": "sum"}}, |
| ) |
| """ |
| sum_metric |
| country UK US |
| dttm |
| 2019-01-01 5 6 |
| 2019-01-02 7 8 |
| """ |
| cum_df = pp.cum(df=pivot_df, operator="sum", columns={"sum_metric": "sum_metric"}) |
| """ |
| sum_metric |
| country UK US |
| dttm |
| 2019-01-01 5 6 |
| 2019-01-02 12 14 |
| """ |
| cum_and_flat_df = pp.flatten(cum_df) |
| """ |
| dttm sum_metric, UK sum_metric, US |
| 0 2019-01-01 5 6 |
| 1 2019-01-02 12 14 |
| """ |
| assert cum_and_flat_df.equals( |
| pd.DataFrame( |
| { |
| "dttm": pd.to_datetime(["2019-01-01", "2019-01-02"]), |
| FLAT_COLUMN_SEPARATOR.join(["sum_metric", "UK"]): [5, 12], |
| FLAT_COLUMN_SEPARATOR.join(["sum_metric", "US"]): [6, 14], |
| } |
| ) |
| ) |
| |
| |
| def test_cum_after_pivot_with_multiple_metrics(): |
| pivot_df = pp.pivot( |
| df=multiple_metrics_df, |
| index=["dttm"], |
| columns=["country"], |
| aggregates={ |
| "sum_metric": {"operator": "sum"}, |
| "count_metric": {"operator": "sum"}, |
| }, |
| ) |
| """ |
| count_metric sum_metric |
| country UK US UK US |
| dttm |
| 2019-01-01 1 2 5 6 |
| 2019-01-02 3 4 7 8 |
| """ |
| cum_df = pp.cum( |
| df=pivot_df, |
| operator="sum", |
| columns={"sum_metric": "sum_metric", "count_metric": "count_metric"}, |
| ) |
| """ |
| count_metric sum_metric |
| country UK US UK US |
| dttm |
| 2019-01-01 1 2 5 6 |
| 2019-01-02 4 6 12 14 |
| """ |
| flat_df = pp.flatten(cum_df) |
| """ |
| dttm count_metric, UK count_metric, US sum_metric, UK sum_metric, US |
| 0 2019-01-01 1 2 5 6 |
| 1 2019-01-02 4 6 12 14 |
| """ |
| assert flat_df.equals( |
| pd.DataFrame( |
| { |
| "dttm": pd.to_datetime(["2019-01-01", "2019-01-02"]), |
| FLAT_COLUMN_SEPARATOR.join(["count_metric", "UK"]): [1, 4], |
| FLAT_COLUMN_SEPARATOR.join(["count_metric", "US"]): [2, 6], |
| FLAT_COLUMN_SEPARATOR.join(["sum_metric", "UK"]): [5, 12], |
| FLAT_COLUMN_SEPARATOR.join(["sum_metric", "US"]): [6, 14], |
| } |
| ) |
| ) |