blob: 2fb6bc5c6ceeb4f6de46294a16f19337d42e5aaf [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import io
from datetime import datetime
import numpy as np
import pytest
from werkzeug.datastructures import FileStorage
from superset.commands.database.exceptions import DatabaseUploadFailed
from superset.commands.database.uploaders.csv_reader import CSVReader, CSVReaderOptions
from tests.unit_tests.fixtures.common import create_csv_file
CSV_DATA = [
["Name", "Age", "City", "Birth"],
["name1", "30", "city1", "1990-02-01"],
["name2", "25", "city2", "1995-02-01"],
["name3", "20", "city3", "2000-02-01"],
]
CSV_DATA_CHANGED_HEADER = [
["name1", "30", "city1", "1990-02-01"],
["Name", "Age", "City", "Birth"],
["name2", "25", "city2", "1995-02-01"],
["name3", "20", "city3", "2000-02-01"],
]
CSV_DATA_WITH_NULLS = [
["Name", "Age", "City", "Birth"],
["name1", "N/A", "city1", "1990-02-01"],
["name2", "25", "None", "1995-02-01"],
["name3", "20", "city3", "2000-02-01"],
]
CSV_DATA_DAY_FIRST = [
["Name", "Age", "City", "Birth"],
["name1", "30", "city1", "01-02-1990"],
]
CSV_DATA_DECIMAL_CHAR = [
["Name", "Age", "City", "Birth"],
["name1", "30,1", "city1", "1990-02-01"],
]
CSV_DATA_SKIP_INITIAL_SPACE = [
[" Name", "Age", "City", "Birth"],
[" name1", "30", "city1", "1990-02-01"],
]
@pytest.mark.parametrize(
"file, options, expected_cols, expected_values",
[
(
create_csv_file(CSV_DATA),
CSVReaderOptions(),
["Name", "Age", "City", "Birth"],
[
["name1", 30, "city1", "1990-02-01"],
["name2", 25, "city2", "1995-02-01"],
["name3", 20, "city3", "2000-02-01"],
],
),
(
create_csv_file(CSV_DATA, delimiter="|"),
CSVReaderOptions(delimiter="|"),
["Name", "Age", "City", "Birth"],
[
["name1", 30, "city1", "1990-02-01"],
["name2", 25, "city2", "1995-02-01"],
["name3", 20, "city3", "2000-02-01"],
],
),
(
create_csv_file(CSV_DATA),
CSVReaderOptions(
columns_read=["Name", "Age"],
),
["Name", "Age"],
[
["name1", 30],
["name2", 25],
["name3", 20],
],
),
(
create_csv_file(CSV_DATA),
CSVReaderOptions(
columns_read=["Name", "Age"],
column_data_types={"Age": "float"},
),
["Name", "Age"],
[
["name1", 30.0],
["name2", 25.0],
["name3", 20.0],
],
),
(
create_csv_file(CSV_DATA),
CSVReaderOptions(
columns_read=[],
),
["Name", "Age", "City", "Birth"],
[
["name1", 30, "city1", "1990-02-01"],
["name2", 25, "city2", "1995-02-01"],
["name3", 20, "city3", "2000-02-01"],
],
),
(
create_csv_file(CSV_DATA),
CSVReaderOptions(
columns_read=[],
column_data_types={"Age": "float"},
),
["Name", "Age", "City", "Birth"],
[
["name1", 30.0, "city1", "1990-02-01"],
["name2", 25.0, "city2", "1995-02-01"],
["name3", 20.0, "city3", "2000-02-01"],
],
),
(
create_csv_file(CSV_DATA),
CSVReaderOptions(
rows_to_read=1,
),
["Name", "Age", "City", "Birth"],
[
["name1", 30.0, "city1", "1990-02-01"],
],
),
(
create_csv_file(CSV_DATA),
CSVReaderOptions(
rows_to_read=1,
columns_read=["Name", "Age"],
),
["Name", "Age"],
[
["name1", 30.0],
],
),
(
create_csv_file(CSV_DATA),
CSVReaderOptions(
skip_rows=1,
),
["name1", "30", "city1", "1990-02-01"],
[
["name2", 25.0, "city2", "1995-02-01"],
["name3", 20.0, "city3", "2000-02-01"],
],
),
(
create_csv_file(CSV_DATA),
CSVReaderOptions(
column_dates=["Birth"],
),
["Name", "Age", "City", "Birth"],
[
["name1", 30, "city1", datetime(1990, 2, 1, 0, 0)],
["name2", 25, "city2", datetime(1995, 2, 1, 0, 0)],
["name3", 20, "city3", datetime(2000, 2, 1, 0, 0)],
],
),
(
create_csv_file(CSV_DATA_CHANGED_HEADER),
CSVReaderOptions(
header_row=1,
),
["Name", "Age", "City", "Birth"],
[
["name2", 25, "city2", "1995-02-01"],
["name3", 20, "city3", "2000-02-01"],
],
),
(
create_csv_file(CSV_DATA_WITH_NULLS),
CSVReaderOptions(
null_values=["N/A", "None"],
),
["Name", "Age", "City", "Birth"],
[
["name1", np.nan, "city1", "1990-02-01"],
["name2", 25.0, np.nan, "1995-02-01"],
["name3", 20.0, "city3", "2000-02-01"],
],
),
(
create_csv_file(CSV_DATA_DAY_FIRST),
CSVReaderOptions(
day_first=False,
column_dates=["Birth"],
),
["Name", "Age", "City", "Birth"],
[
["name1", 30, "city1", datetime(1990, 1, 2, 0, 0)],
],
),
(
create_csv_file(CSV_DATA_DAY_FIRST),
CSVReaderOptions(
day_first=True,
column_dates=["Birth"],
),
["Name", "Age", "City", "Birth"],
[
["name1", 30, "city1", datetime(1990, 2, 1, 0, 0)],
],
),
(
create_csv_file(CSV_DATA_DECIMAL_CHAR),
CSVReaderOptions(
decimal_character=",",
),
["Name", "Age", "City", "Birth"],
[
["name1", 30.1, "city1", "1990-02-01"],
],
),
(
create_csv_file(CSV_DATA_SKIP_INITIAL_SPACE),
CSVReaderOptions(
skip_initial_space=True,
),
["Name", "Age", "City", "Birth"],
[
["name1", 30, "city1", "1990-02-01"],
],
),
],
)
def test_csv_reader_file_to_dataframe(file, options, expected_cols, expected_values):
csv_reader = CSVReader(
options=options,
)
df = csv_reader.file_to_dataframe(file)
assert df.columns.tolist() == expected_cols
actual_values = df.values.tolist()
for i in range(len(expected_values)):
for j in range(len(expected_values[i])):
expected_val = expected_values[i][j]
actual_val = actual_values[i][j]
# Check if both values are NaN
if isinstance(expected_val, float) and isinstance(actual_val, float):
assert np.isnan(expected_val) == np.isnan(actual_val)
else:
assert expected_val == actual_val
file.close()
def test_csv_reader_index_column():
csv_reader = CSVReader(
options=CSVReaderOptions(index_column="Name"),
)
df = csv_reader.file_to_dataframe(create_csv_file(CSV_DATA))
assert df.index.name == "Name"
def test_csv_reader_wrong_index_column():
csv_reader = CSVReader(
options=CSVReaderOptions(index_column="wrong"),
)
with pytest.raises(DatabaseUploadFailed) as ex:
csv_reader.file_to_dataframe(create_csv_file(CSV_DATA))
assert str(ex.value) == "Parsing error: Index wrong invalid"
def test_csv_reader_broken_file_no_columns():
csv_reader = CSVReader(
options=CSVReaderOptions(),
)
with pytest.raises(DatabaseUploadFailed) as ex:
csv_reader.file_to_dataframe(create_csv_file([""]))
assert str(ex.value) == "Parsing error: No columns to parse from file"
def test_csv_reader_wrong_columns_to_read():
csv_reader = CSVReader(
options=CSVReaderOptions(columns_read=["xpto"]),
)
with pytest.raises(DatabaseUploadFailed) as ex:
csv_reader.file_to_dataframe(create_csv_file(CSV_DATA))
assert str(ex.value) == (
"Parsing error: Usecols do not match columns, "
"columns expected but not found: ['xpto']"
)
def test_csv_reader_invalid_file():
csv_reader = CSVReader(
options=CSVReaderOptions(),
)
with pytest.raises(DatabaseUploadFailed) as ex:
csv_reader.file_to_dataframe(
FileStorage(
io.StringIO("c1,c2,c3\na,b,c\n1,2,3,4,5,6,7\n1,2,3"), filename=""
)
)
assert str(ex.value) == (
"Parsing error: Error tokenizing data. C error:"
" Expected 3 fields in line 3, saw 7\n"
)
def test_csv_reader_invalid_encoding():
csv_reader = CSVReader(
options=CSVReaderOptions(),
)
binary_data = b"col1,col2,col3\nv1,v2,\xba\nv3,v4,v5\n"
with pytest.raises(DatabaseUploadFailed) as ex:
csv_reader.file_to_dataframe(FileStorage(io.BytesIO(binary_data)))
assert str(ex.value) == (
"Parsing error: 'utf-8' codec can't decode byte 0xba in"
" position 21: invalid start byte"
)
def test_csv_reader_file_metadata():
csv_reader = CSVReader(
options=CSVReaderOptions(),
)
file = create_csv_file(CSV_DATA)
metadata = csv_reader.file_metadata(file)
assert metadata == {
"items": [
{"column_names": ["Name", "Age", "City", "Birth"], "sheet_name": None}
]
}
file.close()
file = create_csv_file(CSV_DATA, delimiter="|")
csv_reader = CSVReader(
options=CSVReaderOptions(delimiter="|"),
)
metadata = csv_reader.file_metadata(file)
assert metadata == {
"items": [
{"column_names": ["Name", "Age", "City", "Birth"], "sheet_name": None}
]
}
file.close()
def test_csv_reader_file_metadata_invalid_file():
csv_reader = CSVReader(
options=CSVReaderOptions(),
)
with pytest.raises(DatabaseUploadFailed) as ex:
csv_reader.file_metadata(
FileStorage(io.StringIO("c1,c2,c3\na,b,c\n1,2,3,4,5,6,7\n1,2,3"))
)
assert str(ex.value) == (
"Parsing error: Error tokenizing data. C error:"
" Expected 3 fields in line 3, saw 7\n"
)